On the ecosystem and indicator significance of fatty acids in the composition of the low-molecular metabolom of water macrophytes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The hypothesis that aquatic macrophytes produce and include in their low molecular weight metabolome fewer fatty acids (in composition and content) under anthropogenic impact (eutrophication and pollution) than in clean, undisturbed, or slightly disturbed aquatic habitats (oligotrophic and mesotrophic conditions) was tested for the first time. The available data really give grounds to definitely speak about a decrease in the specific production of saturated and unsaturated fatty acids by macrophytes per unit of their biomass with an increase in the processes of eutrophication and pollution in aquatic ecosystems. The use of this pattern for the indicator assessment of anthropogenic influence on aquatic ecosystems is a significant practical application of this regularity.

Full Text

Restricted Access

About the authors

E. A. Kurashov

Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences; St. Petersburg Federal Research Center of the Russian Academy of Sciences

Author for correspondence.
Email: evgeny_kurashov@mail.ru

Institute of Lake Science of the Russian Academy of Sciences, St. Petersburg Federal Research Center of the Russian Academy of Sciences

Russian Federation, Borok, Nekouzsky raion, Yaroslavl oblast; St. Petersburg

J. V. Krylova

Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences; St. Petersburg Federal Research Center of the Russian Academy of Sciences

Email: evgeny_kurashov@mail.ru

Institute of Lake Science of the Russian Academy of Sciences, St. Petersburg Federal Research Center of the Russian Academy of Sciences

Russian Federation, Borok, Nekouzsky raion, Yaroslavl oblast; St. Petersburg

A. M. Chernova

Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences

Email: evgeny_kurashov@mail.ru
Russian Federation, Borok, Nekouzsky raion, Yaroslavl oblast

V. V. Khodonovich

St. Petersburg Federal Research Center of the Russian Academy of Sciences; St. Petersburg Branch of the Federal State Budget Scientific Institution “Russian Federal Research Institute of Fisheries and oceanography” named after L.S. Berg

Email: evgeny_kurashov@mail.ru

Institute of Lake Science of the Russian Academy of Sciences, St. Petersburg Federal Research Center of the Russian Academy of Sciences

Russian Federation, St. Petersburg; St. Petersburg

E. Y. Yavid

St. Petersburg Federal Research Center of the Russian Academy of Sciences

Email: evgeny_kurashov@mail.ru

Institute of Lake Science of the Russian Academy of Sciences

Russian Federation, St. Petersburg

References

  1. Бусева Ж.Ф., Гладышев М.И., Сущик Н.Н. и др. 2021. Эффективность переноса биологически ценных веществ от фитопланктона к планктонным ракообразным в мезотрофном оз. Обстерно (Беларусь) // Биология внутр. вод. № 4. С. 367. https://doi.org/10.31857/S0320965221030037
  2. Крылов А.В., Гладышев М.И., Косолапов Д.Б. и др. 2011. Влияние колонии серой цапли (Ardea cinerea L.) на планктон малого озера и содержание в нем незаменимых полиненасыщенных жирных кислот // Сиб. экол. журн. Т. 18. № 1. С. 59.
  3. Крылова Ю.В., Курашов Е.А., Русанов А.Г. 2020. Сравнительный анализ компонентного состава низкомолекулярного метаболома горца земноводного (Persicaria amphibia (L.) Delarbre) из разнотипных местообитаний в Ладожском озере // Тр. Карельск. науч. центра РАН. № 4. С. 95. https://doi.org/10.17076/lim1141
  4. Крылова Ю.В., Курашов Е.А., Протопопова Е.В. и др. 2024. Состав низкомолекулярного метаболома Potamogeton perfoliatus L. как индикатор трансформации экологического состояния литоральной зоны // Биология внутр. вод. № 4 С. (С. 355.).
  5. Сущик Н.Н. 2008. Роль незаменимых жирных кислот в трофометаболических взаимодействиях в пресноводных экосистемах (обзор) // Журн. общ. биол. Т. 69. № 4. С. 299.
  6. Alford R.A. 1999. Ecology: resource use, competition, and predation // Tadpoles: The Biology of Anuran Larvae. Chicago: Univ. of Chicago Press.
  7. Altig R., Whiles M.R., Taylor C.L. 2007. What do tadpoles really eat? Assessing the trophic status of an understudied and imperiled group of consumers in freshwater habitats // Freshwater Biol. V. 52. P. 386. https://doi.org/10.1111/j.1365-2427.2006.016
  8. Bandara T., Brugel S., Andersson A. et al. 2023. Retention of essential fatty acids in fish differs by species, habitat use and nutritional quality of prey // Ecol. Evol. V. 13. № 6. e10158. https://doi.org/10.1002/ece3.10158
  9. Bashinskiy I.W., Dgebuadze Yu.Yu., Sushchik N.N. et al. 2023. Spadefoot Pelobates vespertinus (Amphibia, Pelobatidae) as a transmitter of fatty acids from water to land in a forest-steppe floodplain // Sci. Tot. Environ. V. 877. P. 162819. https://doi.org/10.1016/j.scitotenv.2023.162819
  10. Gladyshev M.I., Sushchik N.N. 2019. Long-chain omega-3 polyunsaturated fatty acids in natural ecosystems and the human diet: assumptions and challenges // Biomolecules. V. 9. № 9. Р. 485. https://doi.org/10.3390/biom9090485
  11. Gladyshev M.I., Arts M.T., Sushchik N.N. 2009. Preliminary estimates of the export of omega-3 highly unsaturated fatty acids (EPA+DHA) from aquatic to terrestrial ecosystems // Lipids in Aquat. Ecosyst. P. 179. https://doi.org/10.1007/978-0-387-89366-2_8
  12. Gladyshev M.I. 2018. Quality and quantity of biological production in water bodies with different concentration of phosphorus: case study of eurasian perch // Dokl. Biochem. and Biophys. V. 478. № 1. P. 1. https://doi.org/10.1134/s1607672918010015
  13. Iwai N., Kagaya T. 2007. Positive indirect effect of tadpoles on a detritivore through nutrient regeneration // Oecologia. V. 152. P. 685. https://doi.org/10.1007/s00442-007-0682-6
  14. Kurashov E., Krylova J., Protopopova E. 2021. The Use of allelochemicals of aquatic macrophytes to suppress the development of cyanobacterial “blooms” // Plankton Communities. London: IntechOpen. https://doi.org/10.5772/intechopen.95609
  15. Kurashov E.A., Krylova J.V., Mitrukova G.G. et al. 2014. Low-molecular-weight metabolites of aquatic macrophytes growing on the territory of Russia and their role in hydroecosystems // Contemp. Probl. Ecol. V. 7. № 4. P. 433. https://doi.org/10.1134/S1995425514040064
  16. Kurashov E.A., Mitrukova G.G., Krylova J.V. 2018. Interannual variability of low-molecular metabolite composition in Ceratophyllum demersum (Ceratophyllaceae) from a Floodplain lake with a changeable trophic status // Contemp. Probl. Ecol. V. 11. № 2. P. 179. https://doi.org/10.1134/S1995425518020063
  17. Li B., Yin Y., Kang L. et al. 2020. A review: Application of allelochemicals in water ecological restoration – algal inhibition // Chemosphere. P. 128869. https://doi.org/10.1016/j.chemosphere.2020.128869
  18. Nakai S., Yamada S., Hosomi M. 2005. Anti–cyanobacterial fatty acids released from Myriophyllum spicatum // Hydrobiologia. V. 543. P. 71–78. https://doi.org/10.1007/s10750-004-6822-7
  19. Nezbrytska I., Usenko O., Konovets I. et al. 2022. Potential use of aquatic vascular plants to control cyanobacterial blooms: a review // Water. V. 14. № 11. P. 1727. https://doi.org/10.3390/w14111727
  20. Scharnweber K., Chaguaceda F., Dalman E. et al. 2020. The emergence of fatty acids – aquatic insects as vectors along a productivity gradient // Freshwater Biol. V. 65. P. 565. https://doi.org/10.1111/fwb.13454
  21. Schlechtriem C., Arts M.T., Zellmer I.D. 2006. Effect of temperature on the fatty acid composition and temporal trajectories of fatty acids in fasting Daphnia pulex (Crustacea, Cladocera) // Lipids. V. 41. № 4. P. 397. https://doi.org/10.1007/s11745-006-5111-9
  22. Twining C.W., Brenna J.T., Hairston N.G. et al. 2015. Highly unsaturated fatty acids in nature: what we know and what we need to learn // Oikos. V. 125. № 6. P. 749. https://doi.org/10.1111/oik.02910
  23. Twining C.W., Parmar T.P., Mathieu-Resuge M. et al. 2021. Use of fatty acids from aquatic prey varies with foraging strategy // Frontiers in Ecol. and Evol. https://doi.org/10.3389/fevo.2021.735350
  24. Zhu X., Dao G., Tao Y. et al. 2021. A review on control of harmful algal blooms by plant-derived allelochemicals // J. Hazardous Mat. V. 401. P. 123403. https://doi.org/10.1016/j.jhazmat.2020.123403
  25. Wang H.Q., Zhu H.J., Zhang L.Y. et al. 2014. Identification of antialgal compounds from the aquatic plant Elodea nuttallii // Allelopathy J. V. 34. P. 207.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 The Russian Academy of Sciences