Development of immunochemical systems for detection of human skeletal troponin i isoforms
- Authors: Bogomolova A.P.1,2, Katrukha I.A.1,2, Emelin A.M.3, Zabolotsky A.I.1, Bereznikova A.V.1,2, Lebedeva O.S.4, Deev R.V.3, Katrukha A.G.1,2
-
Affiliations:
- Lomonosov Moscow State University
- Hytest Ltd.
- Avtsyn Research Institute of Human Morphology of FSBSI “Petrovsky National Research Centre of Surgery”
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
- Issue: Vol 90, No 3 (2025)
- Pages: 386-402
- Section: Articles
- URL: https://ruspoj.com/0320-9725/article/view/686046
- DOI: https://doi.org/10.31857/S0320972525030047
- EDN: https://elibrary.ru/BKHCBD
- ID: 686046
Cite item
Abstract
Troponin I (TnI), together with troponin T and troponin C (TnC), forms the troponin complex, a thin filament protein of the striated muscle that plays a key role in the regulation of muscle contraction. In humans, TnI is represented by three isoforms: cardiac, which is synthesised only in the myocardium, and fast and slow skeletal, which are synthesised in fast- and slow-twitch muscle fibres, respectively. Skeletal TnI isoforms can be used as biomarkers of skeletal muscle damage of various aetiologies, including mechanical trauma, myopathies, muscle atrophy (sarcopenia), and rhabdomyolysis. Unlike classical markers of muscle damage, such as creatine kinase or myoglobin, which are also present in other tissues, skeletal TnIs are specific for skeletal muscle. In this study, we developed a panel of monoclonal antibodies for immunochemical detection of skeletal TnI isoforms in Western blotting (sensitivity: 0.01-1 ng per lane), in immunohistochemistry, and in fluorescence immunoanalysis. Some of the designed fluorescence immunoanalyses enable the quantification of fast skeletal (limit of detection [LOD]=0.07 ng/mL) and slow skeletal TnI (LOD=0.1 ng/mL) or both isoforms (LOD=0.1 ng/ml). Others allow the differential detection of binary (with TnC) or ternary (with troponin T and TnC) complexes, revealing the composition of troponin forms in human blood.
About the authors
A. P. Bogomolova
Lomonosov Moscow State University; Hytest Ltd.
Author for correspondence.
Email: bogomolova.agnessa@yandex.ru
Faculty of Biology
Russian Federation, 119234 Moscow; Turku, FinlandI. A. Katrukha
Lomonosov Moscow State University; Hytest Ltd.
Email: bogomolova.agnessa@yandex.ru
Faculty of Biology
Russian Federation, 119234 Moscow; Turku, FinlandA. M. Emelin
Avtsyn Research Institute of Human Morphology of FSBSI “Petrovsky National Research Centre of Surgery”
Email: bogomolova.agnessa@yandex.ru
Russian Federation, 117418 Moscow
A. I. Zabolotsky
Lomonosov Moscow State University
Email: bogomolova.agnessa@yandex.ru
Faculty of Biology
Russian Federation, 119234 MoscowA. V. Bereznikova
Lomonosov Moscow State University; Hytest Ltd.
Email: bogomolova.agnessa@yandex.ru
Faculty of Biology
Russian Federation, 119234 Moscow; Turku, FinlandO. S. Lebedeva
Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
Email: bogomolova.agnessa@yandex.ru
Russian Federation, 119435 Moscow
R. V. Deev
Avtsyn Research Institute of Human Morphology of FSBSI “Petrovsky National Research Centre of Surgery”
Email: bogomolova.agnessa@yandex.ru
Russian Federation, 117418 Moscow
A. G. Katrukha
Lomonosov Moscow State University; Hytest Ltd.
Email: bogomolova.agnessa@yandex.ru
Faculty of Biology
Russian Federation, 119234 Moscow; Turku, FinlandReferences
- Kasper, C. E., Talbot, L. A., and Gaines, J. M. (2002) Skeletal muscle damage and recovery, AACN Clin. Issues, 13, 237-247, doi: 10.1097/00044067-200205000-00009.
- Fanzani, A., Conraads, V. M., Penna, F., and Martinet, W. (2012) Molecular and cellular mechanisms of skeletal muscle atrophy: an update, J. Cachexia Sarcopenia Muscle, 3, 163-179, doi: 10.1007/s13539-012-0074-6.
- Bodié, K., Buck, W. R., Pieh, J., Liguori, M. J., and Popp, A. (2016) Biomarker evaluation of skeletal muscle toxicity following clofibrate administration in rats, Exp. Toxicol. Pathol., 68, 289-299, doi: 10.1016/j.etp.2016.03.001.
- Spitali, P., Hettne, K., Tsonaka, R., Charrout, M., van den Bergen, J., Koeks, Z., Kan, H. E., Hooijmans, M. T., Roos, A., Straub, V., Muntoni, F., Al-Khalili-Szigyarto, C., Koel-Simmelink, M. J. A., Teunissen, C. E., Lochmüller, H., Niks, E. H., and Aartsma-Rus, A. (2018) Tracking disease progression non-invasively in Duchenne and Becker muscular dystrophies, J. Cachexia Sarcopenia Muscle, 9, 715-726, doi: 10.1002/jcsm.12304.
- Brancaccio, P., Lippi, G., and Maffulli, N. (2010) Biochemical markers of muscular damage, Clin. Chem. Lab. Med., 48, 757-767, doi: 10.1515/cclm.2010.179.
- Baird, M. F., Graham, S. M., Baker, J. S., and Bickerstaff, G. F. (2012) Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery, J. Nutr. Metab., 2012, 960363, doi: 10.1155/2012/960363.
- Kanatous, S. B., and Mammen, P. P. (2010) Regulation of myoglobin expression, J. Exp. Biol., 213, 2741-2747, doi: 10.1242/jeb.041442.
- Bogomolova, A. P., and Katrukha, I. A. (2024) Troponins and skeletal muscle pathologies, Biochemistry (Moscow), 89, 2083-2106, doi: 10.1134/s0006297924120010.
- Burch, P. M., Greg Hall, D., Walker, E. G., Bracken, W., Giovanelli, R., Goldstein, R., Higgs, R. E., King, N. M., Lane, P., Sauer, J. M., Michna, L., Muniappa, N., Pritt, M. L., Vlasakova, K., Watson, D. E., Wescott, D., Zabka, T. S., and Glaab, W. E. (2016) Evaluation of the relative performance of drug-induced skeletal muscle injury biomarkers in rats, Toxicol. Sci., 150, 247-256, doi: 10.1093/toxsci/kfv328.
- Takahashi, M., Lee, L., Shi, Q., Gawad, Y., and Jackowski, G. (1996) Use of enzyme immunoassay for measurement of skeletal troponin-I utilizing isoform-specific monoclonal antibodies, Clin. Biochem., 29, 301-308, doi: 10.1016/0009-9120(96)00016-1.
- Rama, D., Margaritis, I., Orsetti, A., Marconnet, P., Gros, P., Larue, C., Trinquier, S., Pau, B., and Calzolari, C. (1996) Troponin I immunoenzymometric assays for detection of muscle damage applied to monitoring a triathlon, Clin. Chem., 42, 2033-2035.
- Sorichter, S., Mair, J., Koller, A., Calzolari, C., Huonker, M., Pau, B., and Puschendorf, B. (2001) Release of muscle proteins after downhill running in male and female subjects, Scand. J. Med. Sci. Sports, 11, 28-32, doi: 10.1034/j.1600-0838.2001.011001028.x.
- Onuoha, G. N., Alpar, E. K., Dean, B., Tidman, J., Rama, D., Laprade, M., and Pau, B. (2001) Skeletal troponin-I release in orthopedic and soft tissue injuries, J. Orthop. Sci., 6, 11-15, doi: 10.1007/s007760170018.
- Bamberg, K., Mehtälä, L., Arola, O., Laitinen, S., Nordling, P., Strandberg, M., Strandberg, N., Paltta, J., Mali, M., Espinosa-Ortega, F., Pirilä, L., Lundberg, I. E., Savukoski, T., and Pettersson, K. (2020) Evaluation of a new skeletal troponin I assay in patients with idiopathic inflammatory myopathies, J. Appl. Lab. Med., 5, 320-331, doi: 10.1093/jalm/jfz016.
- Sorichter, S., Mair, J., Koller, A., Gebert, W., Rama, D., Calzolari, C., Artner-Dworzak, E., and Puschendorf, B. (1997) Skeletal troponin I as a marker of exercise-induced muscle damage, J. Appl. Physiol., 83, 1076-1082, doi: 10.1152/jappl.1997.83.4.1076.
- Goldstein, R. A. (2017) Skeletal muscle injury biomarkers: assay qualification efforts and translation to the clinic, Toxicol. Pathol., 45, 943-951, doi: 10.1177/0192623317738927.
- Ayoglu, B., Chaouch, A., Lochmüller, H., Politano, L., Bertini, E., Spitali, P., Hiller, M., Niks, E. H., Gualandi, F., Pontén, F., Bushby, K., Aartsma-Rus, A., Schwartz, E., Le Priol, Y., Straub, V., Uhlén, M., Cirak, S., 't Hoen, P. A., Muntoni, F., Ferlini, A., et al. (2014) Affinity proteomics within rare diseases: a BIO-NMD study for blood biomarkers of muscular dystrophies, EMBO Mol. Med., 6, 918-936, doi: 10.15252/emmm.201303724.
- Westwood, F. R., Bigley, A., Randall, K., Marsden, A. M., and Scott, R. C. (2005) Statin-induced muscle necrosis in the rat: distribution, development, and fibre selectivity, Toxicol. Pathol., 33, 246-257, doi: 10.1080/01926230590908213.
- Chen, T. C., Liu, H. W., Russell, A., Barthel, B. L., Tseng, K. W., Huang, M. J., Chou, T. Y., and Nosaka, K. (2020) Large increases in plasma fast skeletal muscle troponin I after whole-body eccentric exercises, J. Sci. Med. Sport, 23, 776-781, doi: 10.1016/j.jsams.2020.01.011.
- Ciciliot, S., Rossi, A. C., Dyar, K. A., Blaauw, B., and Schiaffino, S. (2013) Muscle type and fiber type specificity in muscle wasting, Int. J. Biochem. Cell Biol., 45, 2191-2199, doi: 10.1016/j.biocel.2013.05.016.
- Katrukha, A. G., Bereznikova, A. V., Esakova, T. V., Pettersson, K., Lövgren, T., Severina, M. E., Pulkki, K., Vuopio-Pulkki, L. M., and Gusev, N. B. (1997) Troponin I is released in bloodstream of patients with acute myocardial infarction not in free form but as complex, Clin. Chem., 43, 1379-1385.
- Vylegzhanina, A. V., Kogan, A. E., Katrukha, I. A., Antipova, O. V., Kara, A. N., Bereznikova, A. V., Koshkina, E. V., and Katrukha, A. G. (2017) Anti-cardiac troponin autoantibodies are specific to the conformational epitopes formed by cardiac troponin I and troponin T in the ternary troponin complex, Clin. Chem., 63, 343-350, doi: 10.1373/clinchem.2016.261602.
- Katrukha, I. A., and Katrukha, A. G. (2021) Myocardial injury and the release of troponins I and T in the blood of patients, Clin. Chem., 67, 124-130, doi: 10.1093/clinchem/hvaa281.
- Köhler, G., and Milstein, C. (1975) Continuous cultures of fused cells secreting antibody of predefined specificity, Nature, 256, 495-497, doi: 10.1038/256495a0.
- Paterson, N., Biggart, E. M., Chapman, R. S., and Beastall, G. H. (1985) Evaluation of a time-resolved immunofluorometric assay for serum thyroid stimulating hormone, Ann. Clin. Biochem., 22 (Pt 6), 606-611, doi: 10.1177/000456328502200609.
- Seferian, K. R., Tamm, N. N., Semenov, A. G., Tolstaya, A. A., Koshkina, E. V., Krasnoselsky, M. I., Postnikov, A. B., Serebryanaya, D. V., Apple, F. S., Murakami, M. M., and Katrukha, A. G. (2008) Immunodetection of glycosylated NT-proBNP circulating in human blood, Clin. Chem., 54, 866-873, doi: 10.1373/clinchem.2007.100040.
- Tholen, D. W., Kroll, M., Astles, J. R., Caffo, A. L., Happe., T. M., Krouwer, J., and Lasky, F. (2003) CLSI. Evaluation of the Linearity of Quantitative Measurement Procedures: A statistical Approach; Approved Guidline. CLSI document EP06-A. Wayne, PA Clinical and Laboratory Standards Institute.
- Mavlikeev, M. O., Kiyasov, A. P., Deev, R. V., Chernova, O. N., and Emelin, A. M. (2023) Histological Technique in the Pathomorhology Laboratory, Practical Medicine.
- Takeda, S., Yamashita, A., Maeda, K., and Maéda, Y. (2003) Structure of the core domain of human cardiac troponin in the Ca2+-saturated form, Nature, 424, 35-41, doi: 10.1038/nature01780.
- Vinogradova, M. V., Stone, D. B., Malanina, G. G., Karatzaferi, C., Cooke, R., Mendelson, R. A., and Fletterick, R. J. (2005) Ca2+-regulated structural changes in troponin, Proc. Natl. Acad. Sci. USA, 102, 5038-5043, doi: 10.1073/pnas.0408882102.
- Takeda, S. (2005) Crystal structure of troponin and the molecular mechanism of muscle regulation, J. Electron. Microsc., 54 Suppl 1, i35-41, doi: 10.1093/jmicro/54.suppl_1.i35.
- Stefancsik, R., Jha, P. K., and Sarkar, S. (1998) Identification and mutagenesis of a highly conserved domain in troponin T responsible for troponin I binding: potential role for coiled coil interaction, Proc. Natl. Acad. Sci. USA, 95, 957-962, doi: 10.1073/pnas.95.3.957.
- Vassylyev, D. G., Takeda, S., Wakatsuki, S., Maeda, K., and Maéda, Y. (1998) The crystal structure of troponin C in complex with N-terminal fragment of troponin I. The mechanism of how the inhibitory action of troponin I is released by Ca2+-binding to troponin C, Adv. Exp. Med. Biol., 453, 157-167.
- Blumenschein, T. M., Stone, D. B., Fletterick, R. J., Mendelson, R. A., and Sykes, B. D. (2006) Dynamics of the C-terminal region of TnI in the troponin complex in solution, Biophys. J., 90, 2436-2444, doi: 10.1529/biophysj.105.076216.
- Julien, O., Mercier, P., Allen, C. N., Fisette, O., Ramos, C. H., Lagüe, P., Blumenschein, T. M., and Sykes, B. D. (2011) Is there nascent structure in the intrinsically disordered region of troponin I? Proteins, 79, 1240-1250, doi: 10.1002/prot.22959.
- Murakami, K., Yumoto, F., Ohki, S. Y., Yasunaga, T., Tanokura, M., and Wakabayashi, T. (2005) Structural basis for Ca2+-regulated muscle relaxation at interaction sites of troponin with actin and tropomyosin, J. Mol. Biol., 352, 178-201, doi: 10.1016/j.jmb.2005.06.067.
- Sheng, J. J., and Jin, J. P. (2016) TNNI1, TNNI2 and TNNI3: evolution, regulation, and protein structure-function relationships, Gene, 576, 385-394, doi: 10.1016/j.gene.2015.10.052.
- Marston, S., and Zamora, J. E. (2020) Troponin structure and function: a view of recent progress, J. Muscle Res. Cell Motil., 41, 71-89, doi: 10.1007/s10974-019-09513-1.
- Sasse, S., Brand, N. J., Kyprianou, P., Dhoot, G. K., Wade, R., Arai, M., Periasamy, M., Yacoub, M. H., and Barton, P. J. (1993) Troponin I gene expression during human cardiac development and in end-stage heart failure, Circ. Res., 72, 932-938, doi: 10.1161/01.res.72.5.932.
- Riabkova, N. S., Kogan, A. E., Katrukha, I. A., Vylegzhanina, A. V., Bogomolova, A. P., Alieva, A. K., Pevzner, D. V., Bereznikova, A. V., and Katrukha, A. G. (2024) Influence of anticoagulants on the dissociation of cardiac troponin complex in blood samples, Int. J. Mol. Sci., 25, doi: 10.3390/ijms25168919.
- Perry, S. V., and Cole, H. A. (1974) Phosphorylation of troponin and the effects of interactions between the components of the complex, Biochem. J., 141, 733-743, doi: 10.1042/bj1410733.
- Moir, A. J., Wilkinson, J. M., and Perry, S. V. (1974) The phosphorylation sites of troponin I from white skeletal muscle of the rabbit, FEBS Lett., 42, 253-256, doi: 10.1016/0014-5793(74)80739-8.
- Cole, H. A., and Perry, S. V. (1975) The phosphorylation of troponin I from cardiac muscle, Biochem. J., 149, 525-533, doi: 10.1042/bj1490525.
- Melby, J. A., Jin, Y., Lin, Z., Tucholski, T., Wu, Z., Gregorich, Z. R., Diffee, G. M., and Ge, Y. (2020) Top-down proteomics reveals myofilament proteoform heterogeneity among various rat skeletal muscle tissues, J. Proteome Res., 19, 446-454, doi: 10.1021/acs.jproteome.9b00623.
- Jin, Y., Diffee, G. M., Colman, R. J., Anderson, R. M., and Ge, Y. (2019) Top-down mass spectrometry of sarcomeric protein post-translational modifications from non-human primate skeletal muscle, J. Am. Soc. Mass Spectrom., 30, 2460-2469, doi: 10.1007/s13361-019-02139-0.
- Chen, Y. C., Sumandea, M. P., Larsson, L., Moss, R. L., and Ge, Y. (2015) Dissecting human skeletal muscle troponin proteoforms by top-down mass spectrometry, J. Muscle Res. Cell Motil., 36, 169-181, doi: 10.1007/s10974-015-9404-6.
- Katrukha, A. G., Bereznikova, A. V., Esakova, T. V., Filatov, V. L., Bulargina, T. V., and Gusev, N. B. (1995) A new method of human cardiac troponin I and troponin T purification, Biochem. Mol. Biol. Int., 36, 195-202.
- Schiaffino, S. (2018) Muscle fiber type diversity revealed by anti-myosin heavy chain antibodies, FEBS J., 285, 3688-3694, doi: 10.1111/febs.14502.
- Bedada, F. B., Chan, S. S., Metzger, S. K., Zhang, L., Zhang, J., Garry, D. J., Kamp, T. J., Kyba, M., and Metzger, J. M. (2014) Acquisition of a quantitative, stoichiometrically conserved ratiometric marker of maturation status in stem cell-derived cardiac myocytes, Stem Cell Rep., 3, 594-605, doi: 10.1016/j.stemcr.2014.07.012.
- Bedada, F. B., Wheelwright, M., and Metzger, J. M. (2016) Maturation status of sarcomere structure and function in human iPSC-derived cardiac myocytes, Biochim. Biophys. Acta, 1863, 1829-1838, doi: 10.1016/j.bbamcr.2015.11.005.
- Chun, Y. W., Balikov, D. A., Feaster, T. K., Williams, C. H., Sheng, C. C., Lee, J. B., Boire, T. C., Neely, M. D., Bellan, L. M., Ess, K. C., Bowman, A. B., Sung, H. J., and Hong, C. C. (2015) Combinatorial polymer matrices enhance in vitro maturation of human induced pluripotent stem cell-derived cardiomyocytes, Biomaterials, 67, 52-64, doi: 10.1016/j.biomaterials.2015.07.004.
- Wu, A. H., Feng, Y. J., Moore, R., Apple, F. S., McPherson, P. H., Buechler, K. F., and Bodor, G. (1998) Characterization of cardiac troponin subunit release into serum after acute myocardial infarction and comparison of assays for troponin T and I. American Association for Clinical Chemistry Subcommittee on cTnI Standardization, Clin. Chem., 44, 1198-1208.
- Bates, K. J., Hall, E. M., Fahie-Wilson, M. N., Kindler, H., Bailey, C., Lythall, D., and Lamb, E. J. (2010) Circulating immunoreactive cardiac troponin forms determined by gel filtration chromatography after acute myocardial infarction, Clin. Chem., 56, 952-958, doi: 10.1373/clinchem.2009.133546.
- Vylegzhanina, A. V., Kogan, A. E., Katrukha, I. A., Koshkina, E. V., Bereznikova, A. V., Filatov, V. L., Bloshchitsyna, M. N., Bogomolova, A. P., and Katrukha, A. G. (2019) Full-size and partially truncated cardiac troponin complexes in the blood of patients with acute myocardial infarction, Clin. Chem., 65, 882-892, doi: 10.1373/clinchem.2018.301127.
- Zimowska, M., Kasprzycka, P., Bocian, K., Delaney, K., Jung, P., Kuchcinska, K., Kaczmarska, K., Gladysz, D., Streminska, W., and Ciemerych, M. A. (2017) Inflammatory response during slow- and fast-twitch muscle regeneration, Muscle Nerve, 55, 400-409, doi: 10.1002/mus.25246.
- Sun, D., Hamlin, D., Butterfield, A., Watson, D. E., and Smith, H. W. (2010) Electrochemiluminescent immunoassay for rat skeletal troponin I (Tnni2) in serum, J. Pharmacol. Toxicol. Methods, 61, 52-58, doi: 10.1016/j.vascn.2009.09.002.
- Burch, P. M., Pogoryelova, O., Goldstein, R., Bennett, D., Guglieri, M., Straub, V., Bushby, K., Lochmüller, H., and Morris, C. (2015) Muscle-derived proteins as serum biomarkers for monitoring disease progression in three forms of muscular dystrophy, J. Neuromuscul. Dis., 2, 241-255, doi: 10.3233/jnd-140066.
Supplementary files
