Characteristics of Cold Atmospheric Plasma Jet when Excited by Sinusoidal and Positive Pulse Voltages for Medical Applications

Cover Page

Cite item

Full Text

Abstract

Low-temperature plasma jets at atmospheric pressure generated by sinusoidal and positive pulsed voltages interact differently with the treated surface. In the experiment and in numerical simulations, we compare the operating modes of helium plasma jets for these types of operating voltages. The discharge current on the treated surface over time and the surface heating are studied for different discharge parameters acceptable for anticancer therapy. The intensity of the emission spectrum is analyzed to improve the effectiveness of the plasma jet. Surface heating is controlled in order to meet the safety conditions of plasma exposure to biological objects. For the case of pulsed voltage the effect of voltage pulse duration on the intensity of plasma-surface interaction is discussed. The results on cancer cells A549 and MCF-7 demonstrate the high efficiency of the cold plasma jet generated at found optimal modes.

About the authors

I. V. Schweigert

Khristianovich Institute of Theoretical and Applied Mechanics, SB Russian Academy of Sciences

Email: biryukov.mm@ya.ru
Russia, 630090, Novosibirsk

D. E. Zakrevskyc

Novosibirsk State Technical University; Rzhanov Institute of Semiconductor Physics, SB Russian Academy of Sciences; Khristianovich Institute of Theoretical and Applied Mechanics, SB Russian Academy of Sciences

Email: biryukov.mm@ya.ru
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk

E. V. Milakhina

Novosibirsk State Technical University; Khristianovich Institute of Theoretical and Applied Mechanics, SB Russian Academy of Sciences

Email: ivschweigert@gmail.com
Novosibirsk, Russia; Novosibirsk, Russia; Novosibirsk, Russia

P. P. Gugin

Rzhanov Institute of Semiconductor Physics, SB Russian Academy of Sciences; Khristianovich Institute of Theoretical and Applied Mechanics, SB Russian Academy of Sciences

Email: biryukov.mm@ya.ru
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk

M. M. Birykov

Institute of Chemical Biology and Fundamental Medicine, SB Russian Academy of Sciences; Novosibirsk State University; Khristianovich Institute of Theoretical and Applied Mechanics, SB Russian Academy of Sciences

Email: biryukov.mm@ya.ru
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk

E. A. Patrakova

Institute of Chemical Biology and Fundamental Medicine, SB Russian Academy of Sciences

Email: biryukov.mm@ya.ru
Russia, 630090, Novosibirsk

O. S. Troitskaya

Institute of Chemical Biology and Fundamental Medicine, SB Russian Academy of Sciences; Khristianovich Institute of Theoretical and Applied Mechanics, SB Russian Academy of Sciences

Email: biryukov.mm@ya.ru
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk

O. A. Koval

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences; Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: ivschweigert@gmail.com
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia

References

  1. Chatraie M., Torkaman G., Khani M., Salehi H., Sho-kri B. // Sci. Reps. 2018. V. 8. P. 5621.
  2. Kos S., Blagus T., Cemazar M., Filipic G., Sersa G., Cvelbar U. // PLoS ONE. 2017. V. 12 (4). P. e0174966.
  3. Гугин П., Закревский Д., Милахина Е. // Письма ЖТФ. 2021. Т. 47. С. 22.
  4. Slikboer E., Viegas P., Bonaventura Z., Garcia-Caurel E., Sobota A., Bourdon A., Guaitella O. // Plasma Sources Sci. Technol. 2019. V. 28. P. 095016.
  5. Viegas P., Hofmans M., van Rooij O., Obrusnk A., Klarenaar B.L.M., Bonaventura Z., Guaitella O., Sobota A., Bourdon A. // Plasma Sources Sci. Technol. 2020. V. 29. P. 095011.
  6. Schweigert I.V., Zakrevsky Dm.E., Gugin P.P., Yelak E.V., Golubitskaya E.A., Troitskaya O.S., Koval O.A. // Appl. Sci. 2019. V. 9. P. 4528.
  7. Schweigert I.V., Alexandrov A.L., Zakrevsky Dm.E. // Plasma Sources Sci. Technol. 2020. V. 29. P. 12LT02.
  8. Schweigert I., Vagapov S., Lin L., Keidar M. // J. Phys D Appl. Phys. 2019. V. 52 (29). P. 295201.
  9. Koval O., Kochneva G., Tkachenko A., Troitskaya O., Sivolobova G., Grazhdantseva A., Nushtaeva A., Kuligi-na E., Richter V. // BioMed. Res. Int. 2017. V. 2017. P. 1.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (667KB)
3.

Download (437KB)
4.

Download (58KB)
5.

Download (127KB)
6.

Download (251KB)
7.

Download (51KB)
8.

Download (113KB)
9.

Download (30KB)

Copyright (c) 2023 Russian Academy of Sciences