Effect of the method of excitation of the plasma antenna on the spectral characteristics of the radiated signal

Cover Page

Cite item

Full Text

Abstract

The radiation of signal by the plasma asymmetrical vibrator antenna is studied for two methods of its excitation. Earlier, it was shown that the 2nd and 3rd harmonics of the input signal frequency in the radiation spectrum of the plasma antenna are 10—20 dB stronger than those of a metal antenna with the same geometry. In this work, we study experimentally and by computer simulations the effect of the method of excitation of the plasma asymmetrical vibrator antenna on the spectral characteristics of the signal that it radiates. For the two excitation methods of the antenna, through an electrode and through a coaxial coupler, it was shown that the strength of the signal components at the frequency of the radiated signal and its multiple harmonics is different. The introduction of the coaxial coupler in the antenna excitation scheme allowed us to improve the coupling at the input signal frequency and decrease its components at the 2nd and 3rd harmonics. For the plasma antenna with the coaxial coupler, the difference between the 1st and 2nd harmonics was increased by almost 6 dB, and between the 1st and the 3rd ones by almost 20 dB compared to the antenna excitation scheme through the electrode.

Keywords

Full Text

Restricted Access

About the authors

N. N. Bogachev

Prokhorov General Physics Institute, Russian Academy of Sciences

Author for correspondence.
Email: bgniknik@yandex.ru
Russian Federation, Moscow

I. L. Bogdankevich

Prokhorov General Physics Institute, Russian Academy of Sciences

Email: bgniknik@yandex.ru
Russian Federation, Moscow

S. E. Andreev

Prokhorov General Physics Institute, Russian Academy of Sciences

Email: bgniknik@yandex.ru
Russian Federation, Moscow

N. G. Gusein-zade

Prokhorov General Physics Institute, Russian Academy of Sciences

Email: bgniknik@yandex.ru
Russian Federation, Moscow

M. S. Usachenok

Stepanov Institute of Physics, National Academy of Sciences of Belarus

Email: bgniknik@yandex.ru
Belarus, Minsk

References

  1. Borg G. G., Harris J. H., Miljak D. G., Martin N. M. // Appl. Phys. Lett. 1999. V. 74. P. 3272. https://doi.org/10.1063/1.874041
  2. Rayner J. P., Whichello A. P., Cheetham A. D. // IEEE Trans. Plasma Sci. 2004. V. 32. P. 269. https://doi.org/10.1109/TPS.2004.826019
  3. Alexeff I., Anderson T., Parameswaran S., Pradeep E. P., Pulasani N. R., Karnam N. // IEEE Trans. Plasma Sci. 2006. V. 34. P. 166. https://doi.org/10.1109/TPS.2006.872180
  4. Liang C., Xu Y., Wang Z. // Chin. Phys. Lett. 2008. V. 25. P. 3712.
  5. Chen Z., Zhu A., LV J. // WSEAS Trans. Commun. 2013. V. 12. P. 63.
  6. Гусейн-заде Н.Г., Минаев И. М., Рухадзе А. А., Рухадзе К. З. // Кр. сообщ. по физике ФИАН. 2011. № 3. С. 42.
  7. Bogachev N. N., Bogdankevich I. L., Gusein-zade N.G., Sergeychev K. F. // Acta Polytechnica. 2015. V. 55. P. 30. https://doi.org/10.14311/AP.2015.55.0034
  8. Ковалев А. С., Вожаков В. А., Кленов Н. В., Аджемов С. С., Терешонок М. В. // Физика плазмы. 2018. Т. 44. С. 211. https://doi.org/10.7868/S0367292118020075
  9. Беляев Б. А., Лексиков А. А., Лексиков Ан.А., Сержантов А. М., Бальва Я. Ф. // Изв. вузов. Физика. 2013. Т. 56. С. 88.
  10. Bogachev N. N. // J. Phys.: Conf. Ser. 2015. V. 661. P. 012054. https://doi.org/012054.10.1088/1742-6596/661/1/012054
  11. Bogachev N. N., Gusein-zade N.G., Nefedov V. I. // Plasma Phys. Reports. 2019. V. 45. P. 372. https://doi.org/10.1134/S1063780X19030024
  12. Tarakanov V. P. User’s Manual for Code KARAT. Springfield, VA: Berkley Research Associates, Inc., 1992.
  13. Berenger J. P. // IEEE Transactions on Antennas and Propagation. 1996. V. 44. P. 110. https://doi.org/10.1109/8.477535
  14. Богачев Н. Н., Богданкевич И. Л., Гусейн-заде Н.Г., Рухадзе А. А. // Физика плазмы. 2015. Т. 41. C. 365. https://doi.org/10.7868/S0367292115100030
  15. Горбунов Л. М. Введение в электродинамику плазмы. М.: Изд-во Ун-та дружбы народов, 1990. 127 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Plasma asymmetric vibrator antenna powered by a coaxial cable: through the electrode of a gas discharge tube (a), through a coaxial connector (b): 1 - metal screen, 2 - gas discharge tube, 3 - coaxial cable, 4 - electrode of a gas discharge tube, 5 - connecting wire, 6 - coaxial connector.

Download (13KB)
3. Fig. 2. Diagram of the stand for measuring the spectrum of the emitted signal: 1 - transceiver (portable radio station) VX-2100, 2 and 5 - coaxial feeders, 3 - radiating antenna (PNVA or MNVA), 4 - measuring antenna, 6 - attenuator, 7 - spectrum analyzer.

Download (6KB)
4. Fig. 3. Schemes of numerical models of a plasma vibrator antenna: connection via electrodes (a), connection via a coaxial connector (b): 1 — coaxial cable, 2 — dielectric tube with PIC plasma, 3 — metal screen, 4 — universal absorbing layer PML.

Download (50KB)
5. Fig. 4. Experimentally measured spectra of the emitted unmodulated harmonic oscillation (taking into account the attenuation coefficient of the attenuator): MNVA (a), PNVA connected through the central electrode of the gas discharge tube (b), PNVA connected through a coaxial adapter [9] (c).

Download (45KB)
6. Fig. 5. PNVA radiation spectra (simulation results) in relative units for two cases of PNVA excitation: through the central electrode (a), coaxial adapter (b).

Download (21KB)
7. Fig. 6. Normalized histograms of spectra (simulation) for two cases of excitation of the PNVA: 1 - through the central electrode, 2 - coaxial adapter.

Download (10KB)

Copyright (c) 2024 Russian Academy of Sciences