Kinetic Model of Vacuum Plasma Expansion in a Cylindrical Gap

Cover Page

Cite item

Full Text

Abstract

Results of a theoretical description of collisionless kinetics of radial expansion of two-component (electron–ion) plasma in the one-dimensional cylindrical formulation of the problem are presented. The electric-field mechanism of supersonic expansion of the plasma flame due to the motion of the electron–ion ensemble and self-consistent electric field in the diode with the potential difference applied to it is demonstrated. The spatiotemporal evolution of the ion energy distribution function, electric potential, and rate of expansion of the emission boundary of the plasma flame is shown. The calculated rates of flame expansion at the copper cathode (~1.5 × 106 cm/s) well agree with the experimental data.

About the authors

V. Yu. Kozhevnikov

Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences

Email: kozyrev@to.hcei.tsc.ru
634055, Tomsk, Russia

A. V. Kozyrev

Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences

Email: kozyrev@to.hcei.tsc.ru
634055, Tomsk, Russia

A. O. Kokovin

Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences

Email: kozyrev@to.hcei.tsc.ru
634055, Tomsk, Russia

N. S. Semenyuk

Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: kozyrev@to.hcei.tsc.ru
634055, Tomsk, Russia

References

  1. Boxman R.L., Sanders D., Martin P. Vacuum Arc Science and Technology. Noyes, Park Ridge, NJ, 1995.
  2. Brown I.G., Galvin J.E., MacGill R.A. // Appl. Phys. Lett. 1985. V. 47. P. 358.
  3. Anders A. Cathodics Arcs: From Fractal Spots to Energetic Condensation. New York: Springer, 2008.
  4. Beilis I.I. // IEEE Transac. Plasma Sci. 2001. V. 29. P. 657.
  5. Chapelle P., Bellot J.P., Duval H., Jardy A., Ablitzer D. // J. Phys. D: Appl. Phys. 2001. V. 35. P. 137.
  6. Hantzsche E. // IEEE Transac. Plasma Sci. 2003. V. 31. P. 799.
  7. Davis W. D., Miller H. C. // J. Appl. Phys. 1969. V. 40. P. 2212.
  8. Brown I., Oks E. // IEEE Transac. Plasma Sci. 2005. V. 33. P. 1931.
  9. Anders A. // Phys. Rev. E. 1997. V. 55. P. 969.
  10. Volkov N.B., Nemirovsky A.Z. // J. Phys. D: Applied Phys. 1991. V. 24. P. 693.
  11. McClure G.W. // J. Applied Phys. 1974. V. 45. P. 2078.
  12. Yushkov G.Y., Bugaev A.S., Krinberg I.A., Oks E.M. // Doklady Phys. 2001. V. 46. P. 307.
  13. Баренгольц С.А., Месяц Г.А., Шмелев Д.Л. // ЖЭТФ. 2001. Т. 120. С. 1227.
  14. Плютто А.А., Рыжков В.H., Капин А.Т. // ЖЭТФ. 1964. Т. 47. С. 494.
  15. Болотов А.В., Козырев А.В., Королев Ю.Д. // Физика плазмы. 1993. Т. 19. С. 709.
  16. Грановский В.Л. Электрический ток в газе. Установившийся ток. М.: Наука, 1971. 544 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (165KB)
3.

Download (341KB)
4.

Download (152KB)
5.

Download (586KB)
6.

Download (220KB)
7.

Download (284KB)

Copyright (c) 2023 Russian Academy of Sciences