Abstract
The initiation of a positive corona discharge near a model hydrometeor in air is studied numerically. Hydrometeors in the form of an ellipsoid of revolution and a cylinder with two hemispheres at the ends are considered as models. Threshold characteristics (external electric field strength, particle charge) are obtained for hydrometers of various sizes and shapes at an atmospheric pressure of 0.4−1 atm. Analysis of the results of numerous calculation options shows that the threshold field strength at the top of the hydrometeor is determined by the curvature radius of the surface at this point and air pressure. A universal dependence of the reduced threshold field strength on the product of the curvature radius of the surface and air pressure is obtained. The simulation results indicate the possibility of initiating a corona discharge in a thundercloud from the top of a hydrometeor less than a centimeter long at a subthreshold reduced field strength of 10−15 kV (cm atm).