Probing open charm production with ALICE-3 detector at high-luminosity Large Hadron Collider
- 作者: Malaev M.V.1,2, Riabov V.G.1,2
-
隶属关系:
- B. P. Konstantinov Petersburg Nuclear Physics Institute of the National Research Center “Kurchatov Institute”
- Moscow Institute of Physics and Technology
- 期: 卷 88, 编号 8 (2024)
- 页面: 1274-1279
- 栏目: Fundamental problems and applications of physics of atomic nucleus
- URL: https://ruspoj.com/0367-6765/article/view/676753
- DOI: https://doi.org/10.31857/S0367676524080182
- EDN: https://elibrary.ru/OPRPFQ
- ID: 676753
如何引用文章
详细
ALICE-3 is a future upgrade of the current ALICE experiment to be operated at high-luminosity Large Hadron Collider at CERN after 2030. One of the physics objectives of the experiment is to probe the hot and dense QCD matter produced in heavy-ion collisions via the measurement of open charm hadron production. The ALICE-3 detector is well equipped to measure production of ground and excited states of D-mesons in the decay channels with charged particles in the final state. In this presentation, we present results of feasibility studies for the measurement of open charm mesons in the decay channels with neutral photons or mesons by utilizing the large acceptance electromagnetic calorimeter.
作者简介
M. Malaev
B. P. Konstantinov Petersburg Nuclear Physics Institute of the National Research Center “Kurchatov Institute”; Moscow Institute of Physics and Technology
编辑信件的主要联系方式.
Email: malaev_mv@pnpi.nrcki.ru
俄罗斯联邦, Gatchina, 188300; Dolgoprudny, 141701
V. Riabov
B. P. Konstantinov Petersburg Nuclear Physics Institute of the National Research Center “Kurchatov Institute”; Moscow Institute of Physics and Technology
Email: malaev_mv@pnpi.nrcki.ru
俄罗斯联邦, Gatchina, 188300; Dolgoprudny, 141701
参考
- Власников А.К., Жеребчевский В.И., Лазарева Т.В. // Изв. РАН. Сер. физ. 2021. Т. 85. № 5. С. 614; Vlasnikov A.K., Zherebchevsky V.I., Lazareva T.V. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 5. P. 469.
- Laermann E., Philipsen O. // Annu. Rev. Nucl. Part. Sci. 2003. V. 53. P. 163.
- Иванищев Д.А., Котов Д.О., Малаев М.В. и др.// Изв. РАН. Сер. физ. 2021. Т. 85. № 12. С. 1800; Ivanishchev D.A., Kotov D.O., Malaev M.V. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 12. P. 1439.
- Adcox K., Adler S.S., Afanasiev S. et al. // Nucl. Phys. A. 2005. V. 757. P. 184.
- Wang Z.M., Aggarwal M.M, Ahammed Z. et al. // Nucl. Phys. A. 2005. V. 757. P. 102.
- Aamodt K., Abrahantes Quintana A., Achenbach R. et al. // JINST. 2008. V. 3. Art. No. S08002.
- Abelev B., Adam J., Adamová D. et al. // arXiv: 2211.02491. 2022.
- Жеребчевский В.И., Вечернин В.В., Иголкин С.Н. и др. // Изв. РАН. Сер. физ. 2021. Т. 85. № 5. С. 702; Zherebchevsky V.I., Vechernin V.V., Igolkin S.N. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 5. P. 541.
- Malaev M.V., Riabov V.G. // Particles. 2023. V. 6. No. 1. P. 364.
- Barnett R.M., Beringer J., Dahl O. et al. // Progr. Theor. Exp. Phys. 2020. V. 2020. Art. No. 083C01.
- Sjostrand T., Mrenna S., Skands P.Z. // Comput. Phys. Commun. 2008. V. 178. P. 852.
补充文件
