Simulation and selection of the optimal experimental conditions to determine the low-energy parameters of the np interaction in the nd breakup reaction at a neutron energy of 5 MeV

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

An experiment to determine the low-energy parameters of np interaction in the nd breakup reaction at a neutron energy of 5 MeV of the RADEX channel of the INR RAS is proposed. The energy of the virtual 1S0 state and the np scattering length can be obtained from the experimental dependence of the reaction yield on the relative energy of motion of the “breakup” neutron and proton in the kinematic region, where the np interaction in the final state is most pronounced. The reaction events were simulated, based on which the optimal conditions for the future experiment were selected.

Sobre autores

A. Kasparov

Institute for Nuclear Research of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: kasparov200191@gmail.com
Rússia, Moscow, 117312

M. Mordovskoy

Institute for Nuclear Research of the Russian Academy of Sciences

Email: kasparov200191@gmail.com
Rússia, Moscow, 117312

A. Afonin

Institute for Nuclear Research of the Russian Academy of Sciences

Email: kasparov200191@gmail.com
Rússia, Moscow, 117312

D. Tsvetkovich

Institute for Nuclear Research of the Russian Academy of Sciences

Email: kasparov200191@gmail.com
Rússia, Moscow, 117312

Bibliografia

  1. Machleidt R., Sammarruca F., Song Y. // Phys. Rev. C. 1996. V. 53. No. 4. Art. No. R1483.
  2. Stoks V.G.J., Klomp R.A.M., Terheggen C.P.F. et al. // Phys. Rev. C. 1994. V. 49. No. 6. Art. No. 2950.
  3. Miller G.A., Nefkens B.M.K., Slaus I. // Phys. Reports. 1990. V. 194. No. 1—2. P. 1.
  4. Dumbrajs O., Koch R., Pilkuhn H. et al. // Nucl. Phys. B. 1983. V. 216. No. 277. P. 277.
  5. Gonzalez Trotter D.E., Salinas F., Chen Q. et. al. // Phys. Rev. Lett. 1999. V. 83. No. 19. P. 3788.
  6. Huhn V., Watzold L., Weber Ch. et al. // Phys. Rev. C. 2000. V. 63. No. 1. Art. No. 014003.
  7. Gonzalez Trotter D.E., Salinas Meneses F., Tornow W. et al. // Phys. Rev. C. 2006. V. 73. No. 3. Art. No. 034001.
  8. von Witsch W., Ruan X., Witala H. // Phys. Rev. C. 2006. V. 74. No. 1. Art. No. 014001.
  9. Конобеевский Е.С., Бурмистров Ю.М., Зуев С.В. и др. // Ядерн. физика. 2010. Т. 73. № 8. С. 1343; Konobeevski E.S., Burmistrov Yu.M., Zuyev S.V. et al. // Phys. Atom. Nucl. 2010. V. 73. No. 8. P. 1302.
  10. Конобеевский Е.С., Афонин А.А., Зуев С.В. и др. // Ядерн. физика. 2020. Т. 83. № 4. С. 288; Konobeevski E.S., Afonin A.A., Zuyev S.V. et al. // Phys. Atom. Nucl. 2020. V. 83. No. 4. P. 523.
  11. Конобеевский Е.С., Каспаров А.А., Мордовской М.В. и др. // Ядерн. физика. 2022. Т. 85. № 3. С. 216; Konobeevski E.S., Kasparov A.A., Mordovskoy M.V. et al. // Phys. Atom. Nucl. 2022. V. 85. No. 3. P. 289.
  12. Konobeevski E., Kasparov A., Mordovskoy M. et al. // Few-Body Syst. 2017. V. 58. Art. No. 107.
  13. Конобеевский Е.С., Зуев С.В., Каспаров A.A. и др. // Ядерн. физика. 2018. Т. 85. № 5. С. 555; Konobeevski E.S., Zuyev S.V., Kasparov A.A. et al. // Phys. Atom. Nucl. 2018. V. 81. No. 5. P. 595.
  14. Каспаров А.А., Мордовской М.В., Афонин А.А. и др. // Ядерн. физика. 2023. Т. 86. № 1. С. 245; Kasparov A.A., Mordovskoy M.V., Afonin A.A. et al. // Phys. Atom. Nucl. 2023. V. 86. No. 1. P. 44.
  15. Зуев С.В., Каспаров А.А., Конобеевский Е.С. // Изв. РАН. Сер. физ. 2017. Т. 81. № 6. С. 753; Zuyev S.V., Kasparov A.A., Konobeevski E.S. // Bull. Russ. Acad. Sci. Phys. 2017. V. 81. No. 6. P. 679.
  16. Мигдал А.Б. // ЖЭТФ. 1955. Т. 28. № 1. С. 10; Migdal A.B. // JETP. 1955. V. 1. No. 1. P. 2.
  17. Watson K.M. // Phys. Rev. 1952. V. 88. No. 5. P. 1163.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024