Coulomb correlations and the electronic structure of bulk V2Te2O

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The effect of Coulomb correlations on the electronic structure of bulk van der Waals material V2Te2O is studied by the charge self-consistent density functional theory and dynamical mean-field theory method. Our results show a significant correlation-induced renormalization of the spectral functions in the vicinity of the Fermi energy which is not accompanied by a transfer of the spectral weight to Hubbard bands. The computed quasiparticle effective mass enhancement m*/m for the V 3d states varies from 1.31 to 3.32 indicating an orbital-dependent nature of correlation effects and suggests an orbital-selective formation of local moments in the V 3d shell. We demonstrate that taking into account of Coulomb interaction between the V 3d electrons yields the electronic specific heat coefficient γ= 26.94mJK-2 mol-1 in reasonable agreement with the experiment. We show that the strength of Coulomb correlations is sufficient to trigger a band shift along the Z − Г − X path of the Brillouin zone leading to a collapse of the electronic Fermi surface pocket centered on the Г − Z direction predicted by density functional theory.

Авторлар туралы

S. Skornyakov

Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences

Email: skornyakov@imp.uran.ru
Yekaterinburg, Russia

I. Trifonov

Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences

Email: skornyakov@imp.uran.ru
Yekaterinburg, Russia

V. Anisimov

Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: skornyakov@imp.uran.ru
Yekaterinburg, Russia

Әдебиет тізімі

  1. S. Z. Butler, S. M. Hollen, L. Cao et al. (Collaboration), ACS Nano 7, 2898 (2013).
  2. K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, Nature 490, 192 (2012).
  3. R. M. Fernandes, A. I. Coldea, H. Ding, I. R. Fisher, P. J. Hirschfeld, and G. Kotliar, Nature 601, 35 (2022).
  4. J. A. Wilson and A. D. Yoffe, Adv. Phys. 18, 193 (1969).
  5. T. F. Smith, R. N. Shelton, and R. E. Schwall, J. Phys. F: Met. Phys. 5, 1713 (1975).
  6. C. B. Scruby, P. M. Williams, and G. S. Parry, Philos. Mag. 31, 255 (1975).
  7. I. Guillam´on, H. Suderow, S. Vieira, L. Cario, P. Diener, and P. Rodi´ere, Phys. Rev. Lett. 101, 166407 (2008).
  8. S. Koley, N. Mohanta, and A. Taraphder, Eur. Phys. J. B 93, 77 (2020).
  9. A. Ablimit, Y.-L. Sun, E.-J. Cheng, Ya-B. Liu, S.-Q. Wu, H. Jiang, Z. Ren, S. Li, and G.-H. Cao, Inorg. Chem. 57, 14617 (2018).
  10. H. Lin, J. Si, X. Zhu, K. Cai, H. Li, L. Kong, X. Yu, and H.-H. Wen, Phys. Rev. B 98, 075132 (2018).
  11. S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, Nat. Rev. Mater. 2, 17033 (2017).
  12. G. H. Han, D. L. Duong, D. H. Keum, S. J. Yun, and Y. H. Lee, Chem. Rev. 118, 6297 (2018).
  13. M. Valldor, P. Merz, Y. Prots, and W. Schnelle, Eur. J. Inorg. Chem. 2016, 23 (2016).
  14. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozen- berg, Rev. Mod. Phys. 68, 13 (1996).
  15. H. Park, A. J. Millis, and C. A. Marianetti, Phys. Rev. B 90, 235103 (2014).
  16. M. V. Sadovskii, Phys.-Uspekhi 51, 1201 (2008).
  17. M. Aichhorn, L. Pourovskii, V. Vildosola, M. Ferrero, O. Parcollet, T. Miyake, A. Georges, and S. Biermann, Phys. Rev. B 80, 085101 (2009).
  18. S. L. Skornyakov, V. I. Anisimov, and D. Vollhardt, Phys. Rev. B 86, 125124 (2012).
  19. S. L. Skornyakov and I. Leonov, Phys. Rev. B 100, 235123 (2019).
  20. L. V. Pourovskii, G. Kotliar, M. I. Katsnelson, and A. I. Lichtenstein, Phys. Rev. B 75, 235107 (2007).
  21. S. L. Skornyakov, N. A. Skorikov, A. V. Lukoyanov, A. O. Shorikov, and V. I. Anisimov, Phys. Rev. B 81, 174522 (2010).
  22. S. L. Skornyakov, D. Y. Novoselov, T. Gu¨rel, and V. I. Anisimov, JETP Lett. 96, 118 (2012).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Российская академия наук, 2024