Hopf Bifurcation in a Predator–Prey System with Infection
- Authors: Krishchenko A.P.1,2, Podderegin O.A.1
- 
							Affiliations: 
							- Bauman Moscow State Technical University, Moscow, 105005, Russia
- Federal Research Center “Computer Science and Control,” Russian Academy of Sciences, Moscow, 119333, Russia
 
- Issue: Vol 59, No 11 (2023)
- Pages: 1566-1570
- Section: Articles
- URL: https://ruspoj.com/0374-0641/article/view/649457
- DOI: https://doi.org/10.31857/S0374064123110122
- EDN: https://elibrary.ru/PEXCDU
- ID: 649457
Cite item
Abstract
We study a model of a predator–prey system with possible infection of prey in the form of a three-dimensional system of ordinary differential equations. Using the localization method of compact invariant sets, the existence of an attractor is proved and a compact positively invariant set is found that estimates its position. The conditions for the extinction of populations and the existence of equilibria are found. A numerical method for finding a Hopf bifurcation of the inner equilibrium is proposed and an example of an arising stable limit cycle is given.
About the authors
A. P. Krishchenko
Bauman Moscow State Technical University, Moscow, 105005, Russia; Federal Research Center “Computer Science and Control,” Russian Academy of Sciences, Moscow, 119333, Russia
														Email: apkri@bmstu.ru
				                					                																			                												                								Москва Россия						
O. A. Podderegin
Bauman Moscow State Technical University, Moscow, 105005, Russia
							Author for correspondence.
							Email: podderegino@gmail.com
				                					                																			                												                								Москва Россия						
References
- Bate A.M., Hilkerr F.M. Complex dynamics in an eco-epidemiological model // Bull. Math. Biol. 2013. V. 75. P. 2059-2078.
- Крищенко А.П. Локализация инвариантных компактов динамических систем // Дифференц. уравнения. 2005. Т. 41. № 12. С. 1597-1604.
- Арнольд В.И. Обыкновенные дифференциальные уравнения. М., 2012.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					