Global'no ustoychivye raznostnye skhemy dlya uravneniya fishera
- Autores: Matus P.P1,2, Pylak D.2
- 
							Afiliações: 
							- Institute of Mathematics, National Academy of Sciences of Belarus
- The John Paul Catholic University of Lublin
 
- Edição: Volume 59, Nº 7 (2023)
- Páginas: 960-967
- Seção: Articles
- URL: https://ruspoj.com/0374-0641/article/view/649504
- DOI: https://doi.org/10.31857/S0374064123070099
- EDN: https://elibrary.ru/GUZVVS
- ID: 649504
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Unconditionally monotone and globally stable difference schemes for the Fisher equation are constructed and investigated. It is shown that for a certain choice of input data, these schemes inherit the main property of a stable solution of the differential problem. The unconditional monotonicity of the difference schemes under consideration is proved, and an a priori estimate for the difference solution in the uniform norm is obtained. The stable behavior of the difference solution in the nonlinear case is proved under strict constraints on the input data. The results obtained are generalized to multidimensional equations, for the approximation of which economical difference schemes are used.
Sobre autores
P. Matus
Institute of Mathematics, National Academy of Sciences of Belarus; The John Paul Catholic University of Lublin
														Email: piotr.p.matus@gmail.com
				                					                																			                												                								Minsk, 220072, Belarus; Lublin, 20-950, Poland						
D. Pylak
The John Paul Catholic University of Lublin
							Autor responsável pela correspondência
							Email: dorotab@kul.pl
				                					                																			                												                								Lublin, 20-950, Poland						
Bibliografia
- Колмогоров А.Н., Петровский И.Г., Пискунов Н.С. Исследование уравнения диффузии, соединённой с возрастанием количества вещества и его применение к одной биологической проблеме // Бюлл. Московского гос. ун-та. Секция А. 1937. Т. 1. № 6. С. 1-25.
- Fisher R.A. The wave of advance of advantageous genes // Ann. Hum. Genetic. 1937. V. 7. № 4. P. 353-369.
- Murray J.D. Mathematical Biology: an Introduction. Berlin, 2001.
- Самарский А.А. Теория разностных схем. М., 1989.
- Matus P., Hieu L.M., Vulkov L.G. Analysis of second order difference schemes on nonuniform grids for quasilinear parabolic equations // J. of Comput. and Appl. Math. 2017. V. 310. P. 186-199.
- Годунов С.К. Разностный метод численного расчёта разрывных решений уравнений гидродинамики // Мат. сб. 1959. Т. 47 (89). № 3. С. 271-306.
- Matus P. The maximum principle and some of its applications// Comput. Methods Appl. Math. 2002. V. 2. P. 50-91.
- Matus P., Lemeshevsky S. Stability and monotonicity of difference schemes for nonlinear scalar conservation laws and multidimensional quasi-linear parabolic equations // Comput. Methods Appl. Math. 2009. V. 9. № 3. P. 253-280.
- Матус П.П., Утебаев Б.Д. Компактные и монотонные разностные схемы для параболических уравнений // Мат. моделирование. 2021. Т. 33. № 4. С. 60-78.
- Godlewski E., Raviart P.-A. Hyperbolic Systems of Conservation Law. Paris, 1991.
- Матус П.П., Ирхин В.А., Лапиньска-Хщонович М., Лемешевский С.В. О точных разностных схемах для гиперболических и параболических уравнений // Дифференц. уравнения. 2007. Т. 43. № 7. С. 978-986.
- Lemeshevsky S., Matus P., Poliakov D. Exact Finite-Difference Schemes. Berlin, 2016.
- Jovanovic B., Lemeshevsky S., Matus P. On the stability of differential-operator equations and operator-difference schemes as $t oinfty$ // Comput. Methods Appl. Math. 2002. V. 2. № 2. P. 153-170.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
