Pt–Ga catalysts based on highly porous silica mcm-41 for propane dehydrogenation
- Authors: Zubkov A.V.1, Bugrova T.A.1, Evdokimova E.V.1, Mamontov G.V.1
-
Affiliations:
- Tomsk State University
- Issue: Vol 66, No 2 (2025)
- Pages: 67-79
- Section: ARTICLES
- URL: https://ruspoj.com/0453-8811/article/view/689861
- DOI: https://doi.org/10.31857/S0453881125020014
- EDN: https://elibrary.ru/SKJMKW
- ID: 689861
Cite item
Abstract
Highly porous SiO2 supports with the MCM-41 structure were synthesized by template method. Pt–Ga catalysts for propane dehydrogenation were obtained using the impregnation method. The structure of the synthesized samples was studied by low-temperature nitrogen adsorption and X-ray phase analysis (XRD), and the properties of catalyst reduction were studied by temperature-programmed reduction in hydrogen (TPR-H2). The catalytic properties were studied in the reaction of propane dehydrogenation, and the influence of hydrogen in the composition of the reaction mixture was studied. It has been shown that the addition of hydrogen into the reaction mixture leads to an increase in the stability and activity of platinum catalysts.
Keywords
Full Text

About the authors
A. V. Zubkov
Tomsk State University
Author for correspondence.
Email: zubkov.chem@gmail.com
Russian Federation, Lenin Ave., 36, Tomsk, 634050
T. A. Bugrova
Tomsk State University
Email: zubkov.chem@gmail.com
Russian Federation, Lenin Ave., 36, Tomsk, 634050
E. V. Evdokimova
Tomsk State University
Email: zubkov.chem@gmail.com
Russian Federation, Lenin Ave., 36, Tomsk, 634050
G. V. Mamontov
Tomsk State University
Email: zubkov.chem@gmail.com
Russian Federation, Lenin Ave., 36, Tomsk, 634050
References
- Lavrenov A.V., Saifulina L.F., Buluchevskii E.A., Bogdanets E.N. Propylene production technology: Today and tomorrow // Catal. Ind. 2015. V. 7. P. 175. https://doi.org/10.1134/S2070050415030083
- Phung T.K., Pham T.L.M., Vu K.B., Busca G. (Bio)Propylene production processes: A critical review // J. Environ. Chem. Eng. 2021. V. 9. № 4. 105673. https://doi.org/10.1016/j.jece.2021.105673
- Kharlamova T.S., Timofeev K.L., Salaev M.A., Svetlichnyi V.A., Vodyankina O.V. Monolayer MgVOx/Al2O3 catalysts for propane oxidative dehydrogenation: Insights into a role of structural, redox, and acid-base properties in catalytic performance // Appl. Catal. A: Gen. 2020. V. 598. 117574(1). https://doi.org/10.1016/j.apcata.2020.117574
- Hu Z.-P., Wang Y., Yang D., Yuan Z.-Y. CrOx supported on high-silica HZSM-5 for propane dehydrogenation // J. Energy Chem. 2020. V. 47. P. 225. https://doi.org/10.1016/j.jechem.2019.12.010
- Sattler J.J.H.B., Ruiz-Martinez J., Santillan-Jimenez E., Weckhuysen B.M. // Catalytic dehydrogenation of light alkanes on metals and metal oxides // Chem. Rev. 2014. V. 114. № 20. P. 10613. https://doi.org/10.1021/cr5002436
- Castro-Fernández P., Mance D., Liu C., Moroz I.B., Abdala P.M., Pidko E.A., Müller C.R. Propane dehydrogenation on Ga2O3-based catalysts: contrasting performance with coordination environment and acidity of surface sites // ACS Catal. 2021. V. 11. № 2. P. 907. https://doi.org/10.1021/acscatal.0c05009
- Nykanen L., Honkala K. Selectivity in propene dehydrogenation on Pt and Pt3Sn surfaces from first principles // ACS Catal. 2013. V. 3. № 12. Р. 3026. https://doi.org/10.1021/cs400566y
- Otroshchenko T., Radnik J., Schneider M., Rodemerck U., Linke D., Kondratenko E.V. Bulk binary ZrO2-based oxides as highly active alternative-type catalysts for non-oxidative isobutane dehydrogenation // Chem. Commun. 2016. V. 52. № 52. P. 8164. https://doi.org/10.1039/C6CC02813F
- Baronskiy M.G., Zaitseva N.A., Kostyukov A.I., Zhuzhgov A.V., Snytnikov V.N. Isobutane Dehydrogenation on CrOx/Al2O3 Nanoparticles Prepared by Laser Synthesis in Various Gases // Kinet. Catal. 2023. V. 64. P. 645. https://doi.org/10.1134/S0023158423050014
- Redekop E.A., Galvita V.V., Poelman H., Bliznuk V., Detavernier C., Marin G.B. Delivering a Modifying Element to Metal Nanoparticles via Support: Pt–Ga Alloying during the Reduction of Pt/Mg(Al,Ga)Ox Catalysts and Its Effects on Propane Dehydrogenation // ACS Catal. 2014. V. 4. № 6. P. 1812. https://doi.org/10.1021/cs500415e
- Nykanen L., Honkala K. Selectivity in propene dehydrogenation on Pt and Pt3Sn surfaces from first principles // ACS Catal. 2013. V. 3. № 12. P. 3026. https://doi.org/10.1021/cs400566y
- Hu B., Schweitzer N.M., Zhang G., Kraft S.J., Childers D.J., Lanci M.P., Hock A.S. Isolated FeII on silica as a selective propane dehydrogenation catalyst // ACS Catal. 2015. V. 5. № 6. P. 3494. https://doi.org/10.1021/acscatal.5b00248
- Wang X.S., Tao Y.A.N.G., Qin L.I., Liu Y.X., Ding Y.C. Phosphorous modified V-MCM-41 catalysts for propane dehydrogenation // J. Fuel Chem. Technol. 2022. V. 50. № 2. P. 227. https://doi.org/10.1016/S1872-5813(21)60138-X
- Hu P., Lang W.Z., Yan X., Chen X.F., Guo Y.J. Vanadium-doped porous silica materials with high catalytic activity and stability for propane dehydrogenation reaction // Appl. Catal. A: Gen. 2018. V. 553. P. 65. https://doi.org/10.1016/j.apcata.2018.01.014
- Zenkovets G.A., Shutilov A.A., Bondareva V.M., Sobolev V.I., Prosvirin I.P., Suprun E.A., Ishchenko A.V., Marchuk A.S., Tsybulya S.V., Gavrilov V.Yu. Effect of Gadolinium Additives on the Active Phase Morphology and Physicochemical and Catalytic Properties of MoVSbNbGdOx/SiO2 Catalysts in the Oxidative Dehydrogenation of Ethane to Ethylene // Kinet. Catal. 2022. V. 63. P. 732. https://doi.org/10.1134/S0023158422060179
- Chen M., Wu J.L., Liu Y.M., Cao Y., Fan K.N. Dehydrogenation of propane in the presence of N2O over In2O3–Al2O3 mixed oxide catalysts // Catal. Commun. 2011. V. 12. № 12. Р. 1063. https://doi.org/10.1016/j.catcom.2011.03.020
- Tan S., Kim S.J., Moore J.S., Liu Y., Dixit R.S., Pendergast J.G., Jones C.W. Propane dehydrogenation over In2O3–Ga2O3–Al2O3 mixed oxides // ChemCatChem. 2016. V. 8. № 1. P. 214. https://doi.org/10.1002/cctc.201500916
- Otroshchenko T., Kondratenko E.V. Effect of hydrogen and supported metal on selectivity and on-stream stability of ZrO2-based catalysts in non-oxidative propane dehydrogenation // Catal. Commun. 2020. V. 144. 106068. https://doi.org/10.1016/j.catcom.2020.106068
- Shao C.T., Lang W.Z., Yan X., Guo Y.J. Catalytic performance of gallium oxide based-catalysts for the propane dehydrogenation reaction: effects of support and loading amount // RSC Adv. 2017. V. 7. № 8. P. 4710. https://doi.org/10.1039/C6RA27204E
- Бельская О.Б., Низовский А.И., Гуляева Т.И., Леонтьева Н.Н., Бухтияров В.И. Катализаторы Pt/(Ga) Al2O3, полученные с использованием металлического алюминия, активированного галлием // Журнал прикладной химии. 2020. T. 93. № 1. https://doi.org/10.31857/S0044461820010132
- Ye J., Liu C., Ge Q. DFT study of CO2 adsorption and hydrogenation on the In2O3 surface // J. Phys. Chem. C. 2012. V. 116. № 14. P. 7817. https://doi.org/10.1021/jp3004773
- Cybulskis V.J., Pradhan S.U., Lovón-Quintana J.J., Hock A.S., Hu B., Zhang G., Miller J.T. The nature of the isolated gallium active center for propane dehydrogenation on Ga/SiO2 // Catal. Lett. 2017. V. 147. P. 1252. https://doi.org/10.1007/s10562-017-2028-2
- Liu Y., Li Z.H., Lu J., Fan K.N. Periodic density functional theory study of propane dehydrogenation over perfect Ga2O3(100) surface // J. Phys. Chem. C. 2008. V. 112. № 51. P. 20382. https://doi.org/10.1021/jp807864z
- Meng X., Duan X., Zhang L., Zhang D., Yang P., Qin H., Zhang Y., Xiao Sh., Duan L., Zhou R. Long-Chain Alkane Dehydrogenation over Hierarchically Porous Ti-Doped Pt–Sn–K/TiO2–Al2O3 Catalysts // Kinet. Catal. 2021. V. 62. № 1. P. 30. https://doi.org/10.1134/S0023158422020070
- Zhu J., Yang M.-L., Yu Y., Zhu Y.-A., Sui Z.-J., Zhou X.-G., Holmen A., Chen D. Size-dependent reaction mechanism and kinetics for propane dehydrogenation over Pt catalysts // ACS Catal. 2015. V. 5. № 11. P. 6310. https://doi.org/10.1021/acscatal.5b01423
- Searles K., Chan K.W., Mendes Burak J.A., Zemlyanov D., Safonova O., Copéret C. Highly productive propane dehydrogenation catalyst using silica-supported Ga–Pt nanoparticles generated from single-sites // J. Am. Chem. Soc. 2018. V. 140. P. 11674. https://doi.org/10.1021/jacs.8b05378
- Abdelgaid M., Dean J., Mpourmpakis G. Improving alkane dehydrogenation activity on γ-Al2O3 through Ga doping // Catal. Sci. Technol. 2020. V. 10. № 21. P. 7194. https://doi.org/10.1039/D0CY01474E
- Chen S., Chang X., Sun G., Zhang T., Xu Y., Wang Y., Gong J // Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies // Chem. Soc. Rev. 2021. V. 50. № 5. P. 3315. https://doi.org/10.1039/D0CS00814A
- Ponte M.V., Rivoira L.P., Cussa J., Martínez M.L., Beltramone A.R., Anunziata O.A. Optimization of the synthesis of SBA-3 mesoporous materials by experimental design // Micropor. Mesopor. Mater. 2016. V. 227. P. 9. https://doi.org/10.1016/j.micromeso.2016.02.030
- Esperanza Adrover M., Pedernera M., Bonne M., Lebeau B., Bucalá V., Gallo L. Synthesis and characterization of mesoporous SBA-15 and SBA-16 as carriers to improve albendazole dissolution rate // Saudi Pharm. J. 2020. V. 28. № 1. P. 15. https://doi.org/10.1016/j.jsps.2019.11.002
- Enninful H.R.N.B., Schneider D., Kohns R., Enke D., Valiullin R. A novel approach for advanced thermoporometry characterization of mesoporous solids: Transition kernels and the serially connected pore model // Micropor. Mesopor. Mater. 2020. V. 309. 110534. https://doi.org/10.1016/j.micromeso.2020.110534
- Janus R., Wądrzyk M., Lewandowski M., Natkański P., Łątka P., Kuśtrowski P. Understanding porous structure of SBA-15 upon pseudomorphic transformation into MCM-41: Non-direct investigation by carbon replication // J. Ind. Eng. Chem. 2020. V. 92. P. 131. https://doi.org/10.1016/j.jiec.2020.08.032
- Vaysipour S., Rafiee Z., Nasr-Esfahani M. Synthesis and characterization of copper (II)-poly (acrylic acid)/M-MCM-41 nanocomposite as a novel mesoporous solid acid catalyst for the one-pot synthesis of polyhydroquinoline derivatives // Polyhedron. 2020. V. 176. 114294. https://doi.org/10.1016/j.poly.2019.114294
- Meng J., Li C., Chen X., Song C., Liang C. Seed-assisted synthesis of ZSM-48 zeolite with low SiO2/Al2O3 ratio for n-hexadecane hydroisomerization // Micropor. Mesopor. Mater. 2020. V. 309. 110565. https://doi.org/10.1016/j.micromeso.2020.110565
- Hu R., Zha L., Cai M. MCM-41-supported mercapto platinum complex as a highly efficient catalyst for the hydrosilylation of olefins with triethoxysilane // Catal. Commun. 2010. V. 11. № 6. P. 563. https://doi.org/10.1016/j.catcom.2009.12.020
- Mamontov G.V., Gorbunova A.S., Vyshegorodtseva E.V., Zaikovskii V.I., Vodyankina O.V. Selective oxidation of CO in the presence of propylene over Ag/MCM-41 catalyst // Catal. Today. 2019. V. 333. P. 245. https://doi.org/10.1016/j.cattod.2018.05.015
- Aprile C., Gobechiya E., Martens J.A., Pescarmona P.P. New mesoporous composites of gallia nanoparticles: high-throughput synthesis and catalytic application // Chem. Commun. 2010. V. 46. № 41. P. 7712. https://doi.org/10.1039/C0CC02729D
- Yan H., Zhao S., Yao S., Liang W., Feng X., Jin X., Yang C. Influence of lewis acid on the activity and selectivity of Pt/MCM-41(Al) catalysts for oxidation of C3 polyols in base-free medium // Ind. Eng. Chem. Res. 2019. V. 58. № 44. P. 20259. https://doi.org/10.1021/acs.iecr.9b04478
- Vyshegorodtseva E.V., Larichev Yu.V., Mamontov G.V. The influence of CTAB/Si ratio on the textural properties of MCM-41 prepared from sodium silicate // J. Solgel Sci. Technol. 2019. Vol. 92. № 2. P. 496. https://doi.org/10.1007/s10971-019-05034-y
- Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) // Pure Appl. Chem. 2015. V. 87. № 9–10. P. 1051.
- Hong G.B., Wu W.S., Chang C.T., Ma C.M. Dichloromethane treatment by mesoporous metal catalysts // J. Chin. Inst. Eng. 2015. V. 38. № 7. P. 908. https://doi.org/10.1080/02533839.2015.1039163
- Chen C.Y., Li H.X., Davis M.E. Studies on mesoporous materials: I. Synthesis and characterization of MCM-41 // Micropor. Mater. 1993. V. 2. № 1. P. 17. https://doi.org/10.1016/0927-6513(93)80058-3
- Martínez-Edo G., Balmori A., Pontón I., Marti del Rio A., Sánchez-García D. Functionalized ordered mesoporous silicas (MCM-41): Synthesis and applications in catalysis // Catalysts. 2018. V. 8. № 12. P. 617. https://doi.org/10.3390/catal8120617
- La-Salvia N., Lovón-Quintana J.J., Lovón A.S.P., Valença G.P. Influence of aluminum addition in the framework of MCM-41 mesoporous molecular sieve synthesized by non-hydrothermal method in an alkali-free system // Mater. Res. 2017. V. 20. P. 1461. https://doi.org/10.1590/1980-5373-MR-2016-1064
- Liu H., Lu G., Guo Y., Wang Y., Guo Y. Synthesis of spherical-like Pt–MCM-41 meso-materials with high catalytic performance for hydrogenation of nitrobenzene // J. Colloid Interf. Sci. 2010. V. 346. № 2. P. 486. https://doi.org/10.1016/j.jcis.2010.03.018
- Hauff K., Tuttlies U., Eigenberger G., Nieken U. Platinum oxide formation and reduction during NO oxidation on a diesel oxidation catalyst – Experimental results // Appl. Catal. B: Environ. 2012. V. 123. P. 107. https://doi.org/10.1016/j.apcatb.2012.04.008
- Mamontov G.V., Gorbunova A.S., Vyshegorodtseva E.V., Zaikovskii V.I., Vodyankina O.V. Selective oxidation of CO in the presence of propylene over Ag/MCM-41 catalyst // Catal. Today. 2019. V. 333. P. 245. https://doi.org/10.1016/j.cattod.2018.05.015
- Jang J.H., Lee S.C., Kim D.J., Kang M., Choung S.J. Characterization of Pt-impregnated MCM-41 and MCM-48 and their catalytic performances in selective catalytic reduction for NOx // Appl. Catal. A: Gen. 2005. V. 286. № 1. P. 36. https://doi.org/10.1016/j.apcata.2005.02.033
- Shen S.C., Kawi S. Mechanism of selective catalytic reduction of NO in the presence of excess O2 over Pt/Si-MCM-41 catalyst // J. Catal. 2003. V. 213. № 2. P. 241. https://doi.org/10.1016/S0021-9517(02)00048-9
- Reyes P., Pecchi G., Morales M., Fierro J.L.G. The nature of the support and the metal precursor on the resistance to sulphur poisoning of Pt supported catalysts // Appl. Catal. A: Gen. 1997. V. 163. № 1–2. P. 145. https://doi.org/10.1016/S0926-860X(97)00138-5
- Buffoni I.N., Gatti M.N., Santori G.F., Pompeo F., Nichio N.N. Hydrogen from glycerol steam reforming with a platinum catalyst supported on a SiO2-C composite // Int. J. Hydrogen Energy. 2017. V. 42. № 18. P. 12967. https://doi.org/10.1016/j.ijhydene.2017.04.047
- Ho L.W., Hwang C.P., Lee J.F., Wang I., Yeh C.T. Reduction of platinum dispersed on dealuminated beta zeolite // J. Mol. Catal. A Chem. 1998. V. 136. № 3. P. 293. https://doi.org/10.1016/S1381-1169(98)00081-8
- Jongpatiwut S., Rattanapuchapong N., Rirksomboon T., Osuwan S., Resasco D.E. Enhanced sulfur tolerance of bimetallic PtPd/Al2O3 catalysts for hydrogenation of tetralin by addition of fluorine // Catal. Lett. 2008. V. 122. P. 214. https://doi.org/10.1007/s10562-007-9391-3
- Shao C.T., Lang W.Z., Yan X., Guo Y.J. Catalytic performance of gallium oxide based-catalysts for the propane dehydrogenation reaction: effects of support and loading amount // RSC Adv. 2017. V. 7. № 8. P. 4710. https://doi.org/10.1039/C6RA27204E
- Zheng B., Hua W., Yue Y., Gao Z. Dehydrogenation of propane to propene over different polymorphs of gallium oxide // J. Catal. 2005. V. 232. № 1. P. 143. https://doi.org/10.1016/j.jcat.2005.03.001
- Xiao H., Zhang J., Wang P., Zhang Z., Zhang Q., Xie H., Tan Y. Mechanistic insight to acidity effects of Ga/HZSM-5 on its activity for propane aromatization // RSC Adv. 2015. Vol. 5. № 112. P. 92222. https://doi.org/10.1039/C5RA15227E
- Gebauer-Henke E., Grams J., Szubiakiewicz E., Farbotko J., Touroude R., Rynkowski J. Pt/Ga2O3 catalysts of selective hydrogenation of crotonaldehyde // J. Catal. 2007. V. 250. № 2. P. 195. https://doi.org/10.1016/j.jcat.2007.06.021
- Araujo H., Hernández D., Zárraga J., Finol D., Ferrer V., Domínguez F. Reducción de NO por CO en catalizadores Pt/Ga2O3/Al2O3 // Catalysts. 2016. V. 5. P. 37. https://zenodo.org/doi/10.5281/zenodo.6191857
- Nesterenko N.S., Ponomoreva O.A., Yuschenko V.V., Ivanova I.I., Testa F., Di Renzo F., Fajula F. Dehydrogenation of ethylbenzene and isobutane over Ga-and Fe-containing mesoporous silicas // Appl. Catal. A: Gen. 2003. V. 254. № 2. P. 261. https://doi.org/10.1016/S0926-860X(03)00488-5
- Castro-Fernández P., Mance D., Liu C., Moroz I.B., Abdala P.M., Pidko E.A., Müller C.R. Propane dehydrogenation on Ga2O3-based catalysts: contrasting performance with coordination environment and acidity of surface sites // ACS Catal. 2021. V. 11. № 2. P. 907. https://doi.org/10.1021/acscatal.0c05009
- Zhao Z.J., Wu T., Xiong C., Sun G., Mu R., Zeng L., Gong J. Hydroxyl-mediated non-oxidative propane dehydrogenation over VOx/γ-Al2O3 catalysts with improved stability // Angew Chem. Int. Ed. Engl. 2018. V. 57. № 23. P. 6791. https://doi.org/10.1002/anie.201800123
- Veselov G.B., Ilyina E.V., Vedyagin A.A. Two-Component Ni–Mg–O/V–Mg–O Catalytic System: II. The Dehydrogenation of Ethane // Kinet. Catal. 2022. V. 63. P. 747. https://doi.org/10.1134/S0023158422060167
- Shelepova E.V., Vedyagin A.A. Comparative Analysis of the Dehydrogenation of Hydrocarbons and Alcohols in a Membrane Reactor // Kinet Catal. 2022. V. 63. P. 43. https://doi.org/10.1134/S0023158422010074
Supplementary files
