Pt–Ga catalysts based on highly porous silica mcm-41 for propane dehydrogenation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Highly porous SiO2 supports with the MCM-41 structure were synthesized by template method. Pt–Ga catalysts for propane dehydrogenation were obtained using the impregnation method. The structure of the synthesized samples was studied by low-temperature nitrogen adsorption and X-ray phase analysis (XRD), and the properties of catalyst reduction were studied by temperature-programmed reduction in hydrogen (TPR-H2). The catalytic properties were studied in the reaction of propane dehydrogenation, and the influence of hydrogen in the composition of the reaction mixture was studied. It has been shown that the addition of hydrogen into the reaction mixture leads to an increase in the stability and activity of platinum catalysts.

Full Text

Restricted Access

About the authors

A. V. Zubkov

Tomsk State University

Author for correspondence.
Email: zubkov.chem@gmail.com
Russian Federation, Lenin Ave., 36, Tomsk, 634050

T. A. Bugrova

Tomsk State University

Email: zubkov.chem@gmail.com
Russian Federation, Lenin Ave., 36, Tomsk, 634050

E. V. Evdokimova

Tomsk State University

Email: zubkov.chem@gmail.com
Russian Federation, Lenin Ave., 36, Tomsk, 634050

G. V. Mamontov

Tomsk State University

Email: zubkov.chem@gmail.com
Russian Federation, Lenin Ave., 36, Tomsk, 634050

References

  1. Lavrenov A.V., Saifulina L.F., Buluchevskii E.A., Bogdanets E.N. Propylene production technology: Today and tomorrow // Catal. Ind. 2015. V. 7. P. 175. https://doi.org/10.1134/S2070050415030083
  2. Phung T.K., Pham T.L.M., Vu K.B., Busca G. (Bio)Propylene production processes: A critical review // J. Environ. Chem. Eng. 2021. V. 9. № 4. 105673. https://doi.org/10.1016/j.jece.2021.105673
  3. Kharlamova T.S., Timofeev K.L., Salaev M.A., Svetlichnyi V.A., Vodyankina O.V. Monolayer MgVOx/Al2O3 catalysts for propane oxidative dehydrogenation: Insights into a role of structural, redox, and acid-base properties in catalytic performance // Appl. Catal. A: Gen. 2020. V. 598. 117574(1). https://doi.org/10.1016/j.apcata.2020.117574
  4. Hu Z.-P., Wang Y., Yang D., Yuan Z.-Y. CrOx supported on high-silica HZSM-5 for propane dehydrogenation // J. Energy Chem. 2020. V. 47. P. 225. https://doi.org/10.1016/j.jechem.2019.12.010
  5. Sattler J.J.H.B., Ruiz-Martinez J., Santillan-Jimenez E., Weckhuysen B.M. // Catalytic dehydrogenation of light alkanes on metals and metal oxides // Chem. Rev. 2014. V. 114. № 20. P. 10613. https://doi.org/10.1021/cr5002436
  6. Castro-Fernández P., Mance D., Liu C., Moroz I.B., Abdala P.M., Pidko E.A., Müller C.R. Propane dehydrogenation on Ga2O3-based catalysts: contrasting performance with coordination environment and acidity of surface sites // ACS Catal. 2021. V. 11. № 2. P. 907. https://doi.org/10.1021/acscatal.0c05009
  7. Nykanen L., Honkala K. Selectivity in propene dehydrogenation on Pt and Pt3Sn surfaces from first principles // ACS Catal. 2013. V. 3. № 12. Р. 3026. https://doi.org/10.1021/cs400566y
  8. Otroshchenko T., Radnik J., Schneider M., Rodemerck U., Linke D., Kondratenko E.V. Bulk binary ZrO2-based oxides as highly active alternative-type catalysts for non-oxidative isobutane dehydrogenation // Chem. Commun. 2016. V. 52. № 52. P. 8164. https://doi.org/10.1039/C6CC02813F
  9. Baronskiy M.G., Zaitseva N.A., Kostyukov A.I., Zhuzhgov A.V., Snytnikov V.N. Isobutane Dehydrogenation on CrOx/Al2O3 Nanoparticles Prepared by Laser Synthesis in Various Gases // Kinet. Catal. 2023. V. 64. P. 645. https://doi.org/10.1134/S0023158423050014
  10. Redekop E.A., Galvita V.V., Poelman H., Bliznuk V., Detavernier C., Marin G.B. Delivering a Modifying Element to Metal Nanoparticles via Support: Pt–Ga Alloying during the Reduction of Pt/Mg(Al,Ga)Ox Catalysts and Its Effects on Propane Dehydrogenation // ACS Catal. 2014. V. 4. № 6. P. 1812. https://doi.org/10.1021/cs500415e
  11. Nykanen L., Honkala K. Selectivity in propene dehydrogenation on Pt and Pt3Sn surfaces from first principles // ACS Catal. 2013. V. 3. № 12. P. 3026. https://doi.org/10.1021/cs400566y
  12. Hu B., Schweitzer N.M., Zhang G., Kraft S.J., Childers D.J., Lanci M.P., Hock A.S. Isolated FeII on silica as a selective propane dehydrogenation catalyst // ACS Catal. 2015. V. 5. № 6. P. 3494. https://doi.org/10.1021/acscatal.5b00248
  13. Wang X.S., Tao Y.A.N.G., Qin L.I., Liu Y.X., Ding Y.C. Phosphorous modified V-MCM-41 catalysts for propane dehydrogenation // J. Fuel Chem. Technol. 2022. V. 50. № 2. P. 227. https://doi.org/10.1016/S1872-5813(21)60138-X
  14. Hu P., Lang W.Z., Yan X., Chen X.F., Guo Y.J. Vanadium-doped porous silica materials with high catalytic activity and stability for propane dehydrogenation reaction // Appl. Catal. A: Gen. 2018. V. 553. P. 65. https://doi.org/10.1016/j.apcata.2018.01.014
  15. Zenkovets G.A., Shutilov A.A., Bondareva V.M., Sobolev V.I., Prosvirin I.P., Suprun E.A., Ishchenko A.V., Marchuk A.S., Tsybulya S.V., Gavrilov V.Yu. Effect of Gadolinium Additives on the Active Phase Morphology and Physicochemical and Catalytic Properties of MoVSbNbGdOx/SiO2 Catalysts in the Oxidative Dehydrogenation of Ethane to Ethylene // Kinet. Catal. 2022. V. 63. P. 732. https://doi.org/10.1134/S0023158422060179
  16. Chen M., Wu J.L., Liu Y.M., Cao Y., Fan K.N. Dehydrogenation of propane in the presence of N2O over In2O3–Al2O3 mixed oxide catalysts // Catal. Commun. 2011. V. 12. № 12. Р. 1063. https://doi.org/10.1016/j.catcom.2011.03.020
  17. Tan S., Kim S.J., Moore J.S., Liu Y., Dixit R.S., Pendergast J.G., Jones C.W. Propane dehydrogenation over In2O3–Ga2O3–Al2O3 mixed oxides // ChemCatChem. 2016. V. 8. № 1. P. 214. https://doi.org/10.1002/cctc.201500916
  18. Otroshchenko T., Kondratenko E.V. Effect of hydrogen and supported metal on selectivity and on-stream stability of ZrO2-based catalysts in non-oxidative propane dehydrogenation // Catal. Commun. 2020. V. 144. 106068. https://doi.org/10.1016/j.catcom.2020.106068
  19. Shao C.T., Lang W.Z., Yan X., Guo Y.J. Catalytic performance of gallium oxide based-catalysts for the propane dehydrogenation reaction: effects of support and loading amount // RSC Adv. 2017. V. 7. № 8. P. 4710. https://doi.org/10.1039/C6RA27204E
  20. Бельская О.Б., Низовский А.И., Гуляева Т.И., Леонтьева Н.Н., Бухтияров В.И. Катализаторы Pt/(Ga) Al2O3, полученные с использованием металлического алюминия, активированного галлием // Журнал прикладной химии. 2020. T. 93. № 1. https://doi.org/10.31857/S0044461820010132
  21. Ye J., Liu C., Ge Q. DFT study of CO2 adsorption and hydrogenation on the In2O3 surface // J. Phys. Chem. C. 2012. V. 116. № 14. P. 7817. https://doi.org/10.1021/jp3004773
  22. Cybulskis V.J., Pradhan S.U., Lovón-Quintana J.J., Hock A.S., Hu B., Zhang G., Miller J.T. The nature of the isolated gallium active center for propane dehydrogenation on Ga/SiO2 // Catal. Lett. 2017. V. 147. P. 1252. https://doi.org/10.1007/s10562-017-2028-2
  23. Liu Y., Li Z.H., Lu J., Fan K.N. Periodic density functional theory study of propane dehydrogenation over perfect Ga2O3(100) surface // J. Phys. Chem. C. 2008. V. 112. № 51. P. 20382. https://doi.org/10.1021/jp807864z
  24. Meng X., Duan X., Zhang L., Zhang D., Yang P., Qin H., Zhang Y., Xiao Sh., Duan L., Zhou R. Long-Chain Alkane Dehydrogenation over Hierarchically Porous Ti-Doped Pt–Sn–K/TiO2–Al2O3 Catalysts // Kinet. Catal. 2021. V. 62. № 1. P. 30. https://doi.org/10.1134/S0023158422020070
  25. Zhu J., Yang M.-L., Yu Y., Zhu Y.-A., Sui Z.-J., Zhou X.-G., Holmen A., Chen D. Size-dependent reaction mechanism and kinetics for propane dehydrogenation over Pt catalysts // ACS Catal. 2015. V. 5. № 11. P. 6310. https://doi.org/10.1021/acscatal.5b01423
  26. Searles K., Chan K.W., Mendes Burak J.A., Zemlyanov D., Safonova O., Copéret C. Highly productive propane dehydrogenation catalyst using silica-supported Ga–Pt nanoparticles generated from single-sites // J. Am. Chem. Soc. 2018. V. 140. P. 11674. https://doi.org/10.1021/jacs.8b05378
  27. Abdelgaid M., Dean J., Mpourmpakis G. Improving alkane dehydrogenation activity on γ-Al2O3 through Ga doping // Catal. Sci. Technol. 2020. V. 10. № 21. P. 7194. https://doi.org/10.1039/D0CY01474E
  28. Chen S., Chang X., Sun G., Zhang T., Xu Y., Wang Y., Gong J // Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies // Chem. Soc. Rev. 2021. V. 50. № 5. P. 3315. https://doi.org/10.1039/D0CS00814A
  29. Ponte M.V., Rivoira L.P., Cussa J., Martínez M.L., Beltramone A.R., Anunziata O.A. Optimization of the synthesis of SBA-3 mesoporous materials by experimental design // Micropor. Mesopor. Mater. 2016. V. 227. P. 9. https://doi.org/10.1016/j.micromeso.2016.02.030
  30. Esperanza Adrover M., Pedernera M., Bonne M., Lebeau B., Bucalá V., Gallo L. Synthesis and characterization of mesoporous SBA-15 and SBA-16 as carriers to improve albendazole dissolution rate // Saudi Pharm. J. 2020. V. 28. № 1. P. 15. https://doi.org/10.1016/j.jsps.2019.11.002
  31. Enninful H.R.N.B., Schneider D., Kohns R., Enke D., Valiullin R. A novel approach for advanced thermoporometry characterization of mesoporous solids: Transition kernels and the serially connected pore model // Micropor. Mesopor. Mater. 2020. V. 309. 110534. https://doi.org/10.1016/j.micromeso.2020.110534
  32. Janus R., Wądrzyk M., Lewandowski M., Natkański P., Łątka P., Kuśtrowski P. Understanding porous structure of SBA-15 upon pseudomorphic transformation into MCM-41: Non-direct investigation by carbon replication // J. Ind. Eng. Chem. 2020. V. 92. P. 131. https://doi.org/10.1016/j.jiec.2020.08.032
  33. Vaysipour S., Rafiee Z., Nasr-Esfahani M. Synthesis and characterization of copper (II)-poly (acrylic acid)/M-MCM-41 nanocomposite as a novel mesoporous solid acid catalyst for the one-pot synthesis of polyhydroquinoline derivatives // Polyhedron. 2020. V. 176. 114294. https://doi.org/10.1016/j.poly.2019.114294
  34. Meng J., Li C., Chen X., Song C., Liang C. Seed-assisted synthesis of ZSM-48 zeolite with low SiO2/Al2O3 ratio for n-hexadecane hydroisomerization // Micropor. Mesopor. Mater. 2020. V. 309. 110565. https://doi.org/10.1016/j.micromeso.2020.110565
  35. Hu R., Zha L., Cai M. MCM-41-supported mercapto platinum complex as a highly efficient catalyst for the hydrosilylation of olefins with triethoxysilane // Catal. Commun. 2010. V. 11. № 6. P. 563. https://doi.org/10.1016/j.catcom.2009.12.020
  36. Mamontov G.V., Gorbunova A.S., Vyshegorodtseva E.V., Zaikovskii V.I., Vodyankina O.V. Selective oxidation of CO in the presence of propylene over Ag/MCM-41 catalyst // Catal. Today. 2019. V. 333. P. 245. https://doi.org/10.1016/j.cattod.2018.05.015
  37. Aprile C., Gobechiya E., Martens J.A., Pescarmona P.P. New mesoporous composites of gallia nanoparticles: high-throughput synthesis and catalytic application // Chem. Commun. 2010. V. 46. № 41. P. 7712. https://doi.org/10.1039/C0CC02729D
  38. Yan H., Zhao S., Yao S., Liang W., Feng X., Jin X., Yang C. Influence of lewis acid on the activity and selectivity of Pt/MCM-41(Al) catalysts for oxidation of C3 polyols in base-free medium // Ind. Eng. Chem. Res. 2019. V. 58. № 44. P. 20259. https://doi.org/10.1021/acs.iecr.9b04478
  39. Vyshegorodtseva E.V., Larichev Yu.V., Mamontov G.V. The influence of CTAB/Si ratio on the textural properties of MCM-41 prepared from sodium silicate // J. Solgel Sci. Technol. 2019. Vol. 92. № 2. P. 496. https://doi.org/10.1007/s10971-019-05034-y
  40. Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) // Pure Appl. Chem. 2015. V. 87. № 9–10. P. 1051.
  41. Hong G.B., Wu W.S., Chang C.T., Ma C.M. Dichloromethane treatment by mesoporous metal catalysts // J. Chin. Inst. Eng. 2015. V. 38. № 7. P. 908. https://doi.org/10.1080/02533839.2015.1039163
  42. Chen C.Y., Li H.X., Davis M.E. Studies on mesoporous materials: I. Synthesis and characterization of MCM-41 // Micropor. Mater. 1993. V. 2. № 1. P. 17. https://doi.org/10.1016/0927-6513(93)80058-3
  43. Martínez-Edo G., Balmori A., Pontón I., Marti del Rio A., Sánchez-García D. Functionalized ordered mesoporous silicas (MCM-41): Synthesis and applications in catalysis // Catalysts. 2018. V. 8. № 12. P. 617. https://doi.org/10.3390/catal8120617
  44. La-Salvia N., Lovón-Quintana J.J., Lovón A.S.P., Valença G.P. Influence of aluminum addition in the framework of MCM-41 mesoporous molecular sieve synthesized by non-hydrothermal method in an alkali-free system // Mater. Res. 2017. V. 20. P. 1461. https://doi.org/10.1590/1980-5373-MR-2016-1064
  45. Liu H., Lu G., Guo Y., Wang Y., Guo Y. Synthesis of spherical-like Pt–MCM-41 meso-materials with high catalytic performance for hydrogenation of nitrobenzene // J. Colloid Interf. Sci. 2010. V. 346. № 2. P. 486. https://doi.org/10.1016/j.jcis.2010.03.018
  46. Hauff K., Tuttlies U., Eigenberger G., Nieken U. Platinum oxide formation and reduction during NO oxidation on a diesel oxidation catalyst – Experimental results // Appl. Catal. B: Environ. 2012. V. 123. P. 107. https://doi.org/10.1016/j.apcatb.2012.04.008
  47. Mamontov G.V., Gorbunova A.S., Vyshegorodtseva E.V., Zaikovskii V.I., Vodyankina O.V. Selective oxidation of CO in the presence of propylene over Ag/MCM-41 catalyst // Catal. Today. 2019. V. 333. P. 245. https://doi.org/10.1016/j.cattod.2018.05.015
  48. Jang J.H., Lee S.C., Kim D.J., Kang M., Choung S.J. Characterization of Pt-impregnated MCM-41 and MCM-48 and their catalytic performances in selective catalytic reduction for NOx // Appl. Catal. A: Gen. 2005. V. 286. № 1. P. 36. https://doi.org/10.1016/j.apcata.2005.02.033
  49. Shen S.C., Kawi S. Mechanism of selective catalytic reduction of NO in the presence of excess O2 over Pt/Si-MCM-41 catalyst // J. Catal. 2003. V. 213. № 2. P. 241. https://doi.org/10.1016/S0021-9517(02)00048-9
  50. Reyes P., Pecchi G., Morales M., Fierro J.L.G. The nature of the support and the metal precursor on the resistance to sulphur poisoning of Pt supported catalysts // Appl. Catal. A: Gen. 1997. V. 163. № 1–2. P. 145. https://doi.org/10.1016/S0926-860X(97)00138-5
  51. Buffoni I.N., Gatti M.N., Santori G.F., Pompeo F., Nichio N.N. Hydrogen from glycerol steam reforming with a platinum catalyst supported on a SiO2-C composite // Int. J. Hydrogen Energy. 2017. V. 42. № 18. P. 12967. https://doi.org/10.1016/j.ijhydene.2017.04.047
  52. Ho L.W., Hwang C.P., Lee J.F., Wang I., Yeh C.T. Reduction of platinum dispersed on dealuminated beta zeolite // J. Mol. Catal. A Chem. 1998. V. 136. № 3. P. 293. https://doi.org/10.1016/S1381-1169(98)00081-8
  53. Jongpatiwut S., Rattanapuchapong N., Rirksomboon T., Osuwan S., Resasco D.E. Enhanced sulfur tolerance of bimetallic PtPd/Al2O3 catalysts for hydrogenation of tetralin by addition of fluorine // Catal. Lett. 2008. V. 122. P. 214. https://doi.org/10.1007/s10562-007-9391-3
  54. Shao C.T., Lang W.Z., Yan X., Guo Y.J. Catalytic performance of gallium oxide based-catalysts for the propane dehydrogenation reaction: effects of support and loading amount // RSC Adv. 2017. V. 7. № 8. P. 4710. https://doi.org/10.1039/C6RA27204E
  55. Zheng B., Hua W., Yue Y., Gao Z. Dehydrogenation of propane to propene over different polymorphs of gallium oxide // J. Catal. 2005. V. 232. № 1. P. 143. https://doi.org/10.1016/j.jcat.2005.03.001
  56. Xiao H., Zhang J., Wang P., Zhang Z., Zhang Q., Xie H., Tan Y. Mechanistic insight to acidity effects of Ga/HZSM-5 on its activity for propane aromatization // RSC Adv. 2015. Vol. 5. № 112. P. 92222. https://doi.org/10.1039/C5RA15227E
  57. Gebauer-Henke E., Grams J., Szubiakiewicz E., Farbotko J., Touroude R., Rynkowski J. Pt/Ga2O3 catalysts of selective hydrogenation of crotonaldehyde // J. Catal. 2007. V. 250. № 2. P. 195. https://doi.org/10.1016/j.jcat.2007.06.021
  58. Araujo H., Hernández D., Zárraga J., Finol D., Ferrer V., Domínguez F. Reducción de NO por CO en catalizadores Pt/Ga2O3/Al2O3 // Catalysts. 2016. V. 5. P. 37. https://zenodo.org/doi/10.5281/zenodo.6191857
  59. Nesterenko N.S., Ponomoreva O.A., Yuschenko V.V., Ivanova I.I., Testa F., Di Renzo F., Fajula F. Dehydrogenation of ethylbenzene and isobutane over Ga-and Fe-containing mesoporous silicas // Appl. Catal. A: Gen. 2003. V. 254. № 2. P. 261. https://doi.org/10.1016/S0926-860X(03)00488-5
  60. Castro-Fernández P., Mance D., Liu C., Moroz I.B., Abdala P.M., Pidko E.A., Müller C.R. Propane dehydrogenation on Ga2O3-based catalysts: contrasting performance with coordination environment and acidity of surface sites // ACS Catal. 2021. V. 11. № 2. P. 907. https://doi.org/10.1021/acscatal.0c05009
  61. Zhao Z.J., Wu T., Xiong C., Sun G., Mu R., Zeng L., Gong J. Hydroxyl-mediated non-oxidative propane dehydrogenation over VOx/γ-Al2O3 catalysts with improved stability // Angew Chem. Int. Ed. Engl. 2018. V. 57. № 23. P. 6791. https://doi.org/10.1002/anie.201800123
  62. Veselov G.B., Ilyina E.V., Vedyagin A.A. Two-Component Ni–Mg–O/V–Mg–O Catalytic System: II. The Dehydrogenation of Ethane // Kinet. Catal. 2022. V. 63. P. 747. https://doi.org/10.1134/S0023158422060167
  63. Shelepova E.V., Vedyagin A.A. Comparative Analysis of the Dehydrogenation of Hydrocarbons and Alcohols in a Membrane Reactor // Kinet Catal. 2022. V. 63. P. 43. https://doi.org/10.1134/S0023158422010074

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Nitrogen adsorption–desorption isotherms (a) and corresponding pore size distributions (b) for MCM-41 and catalysts based on it.

Download (1MB)
3. Fig. 2. XRD patterns of the obtained catalysts (a) and the XRD region containing the reflection for the Pt(111) plane (b).

Download (1MB)
4. Fig. 3. H2-TPR profiles of catalysts obtained on the basis of MCM-41.

Download (708KB)
5. Fig. 4. Dependencies of propane conversion (X(C3H8)) and propylene yield (Y(C3H6)) (a) and selectivity of product formation (S) (b–g) for MCM-41-based catalysts as a function of propane dehydrogenation reaction time at 550 and 600°C during three consecutive cycles of reaction–regeneration–activation.

Download (4MB)

Copyright (c) 2025 Russian Academy of Sciences