Mathematical modelling of complex oscillations during ethylene oxidation over nickel catalyst

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article is devoted to the experimental and theoretical study of complex oscillations during ethylene oxidation on the nickel foil. Mathematical model was based on the 14-stage mechanism of reaction including the stages of oxidation and reduction of the Ni catalyst. An essential condition for the occurrence of an oscillatory behavior of the system was the adsorption of C2H4 and CO from the mobile pre-adsorption state. It was shown that for real values of the parameters, the mathematical model can describe both regular and irregular oscillations, as well as the “mixed-mode” oscillations observed in the experiment. For the first time oscillations with different properties and distinct mechanisms of their occurrence were detected in the same model. It was demonstrated that oscillations occurred as a result of a strong dependence of the reaction rate on the concentration of active sites both due to a variation in the concentration of the surface oxide or the surface carbon.

Full Text

Restricted Access

About the authors

M. M. Slinko

N.N. Semenov Federal Research Center for Chemical Physics RAS

Author for correspondence.
Email: slinko@polymer.chph.ras.ru
Russian Federation, Moscow

N. L. Semendyaeva

Moscow State University, Faculty of Computational Mathematics and Cybernetics; Shenzhen MSU-BIT University

Email: slinko@polymer.chph.ras.ru

Faculty of Computational Mathematics and Cybernetics

Russian Federation, Moscow; International University Park Road, Dayun New Town, Longgang District, Shenzhen, 518172, Китай

A. G. Makeev

Moscow State University, Faculty of Computational Mathematics and Cybernetics

Email: slinko@polymer.chph.ras.ru
Russian Federation, Moscow

V. Yu. Bychkov

N.N. Semenov Federal Research Center for Chemical Physics RAS

Email: slinko@polymer.chph.ras.ru
Russian Federation, Moscow

References

  1. Margolis L.Ya. // Adv. Catal. 1963. V. 14. P. 429. https://doi.org/10.1016/S0360-0564(08)60342-9
  2. Smolakova L., Kout M., Koudelkova E., Čapek L. // Ind. Eng. Chem. Res. 2015. V. 54. P. 12730. https://doi.org/10.1021/acs.iecr.5b03425
  3. Saraev A.A, Vinokurov Z.S, Kaichev V.V, Shmakov A.N, Bukhtiyarov V.I. // Catal. Sci. Technol. 2017. V. 7. P. 1646. https://doi.org/10.1039/C6CY02673G
  4. Kaichev V.V., Gladky A.Y., Prosvirin I.P., Saraev A.A., Hävecker M., Knop-Gericke A., Schlögl R., Bukhtiyarov V.I. // Surf. Sci. 2013. V. 609. P. 113. http://dx.doi.org/10.1016/j.susc.2012.11.012
  5. Zhang X.L., Mingos D.M.P., Hayward D.O. // Catal. Lett. 2001. V. 72. P. 147. https://doi.org/10.23/A:1009036128275
  6. Bychkov V.Yu., Tyulenin Yu.P., Slinko M.M., Korchak V.N. // Catal. Lett. 2007. V. 119. P. 339. https://doi.org/10.1007/s10562-007-9241-3
  7. Gladky A.Yu., Ermolaev V.K., Parmon V.N. // Catal. Lett. 2001. V. 77. P. 103. https://doi.org/10.23/A:1012703631994
  8. Bychkov V.Y., Tyulenin Y.P., Slinko M.M., Lomonosov V.I., Korchak V.N. // Catal. Lett. 2018. V. 148. P. 3646. https://doi.org/10.1007/s10562-018-2578-y
  9. Bychkov V.Yu., Tyulenin Yu.P., Slinko M.M., Korchak V.N. // Proc. of the IX International Conference “Mechanisms of catalytic reactions”. St. Petersburg, Russia. 2012. P. 165. https://doi.org/10.1595/147106713X660233
  10. Слинько М.М., Макеев А.Г. // Кинетика и катализ. 2020. Т. 61. № 4. С. 495. https://doi.org/10.1134/S0023158420040114
  11. Slinko M.M., Korchak V.N. Peskov N.V. // Appl. Catal. A: Gen. 2006. V. 303. № 2. P. 258. https://doi.org/10.1016/j.apcata.2006.02.010
  12. Lashina E.A., Kaichev V.V., Saraev A.A., Vinokurov Z.S., Chumakova N.A., Chumakov G.A., Bukhtiyarov V.I. // J. Phys. Chem. A. 2017. V. 121. P. 6874. https://doi.org/10.1021/acs.jpca.7b04525
  13. Ustyugov V.V, Kaichev V.V., Lashina E.A., Chumakova N.A., Bukhtiyarov V.I. // Kinet. Catal. 2016. V. 57. P. 113. https://doi.org/10.1134/S0023158415060142
  14. Lashina E.A., Kaichev V.V., Saraev A.A., Vinokurov Z.S., Chumakova N.A., Chumakov G.A., Bukhtiyarov V.I. // Top. Catal. 2020. V. 63. P. 33. https://doi.org/10.1007/s11244-019-01219-5
  15. Krisher K., Eiswirth M., Ertl G. // J. Chem. Phys. 1992. V. 96. P. 9161. https://doi.org/10.1063/1.462226
  16. Makeev A.G., Nieuwenhuys B.E. // J. Chem. Phys. 1998. V. 108. P. 3740. https://doi.org/10.1063/1.475767
  17. Stuckless J.T., Wartnaby C.E., Al-Sarraf N., Dixon-Warren St. J.B., Kovar M., King D.A. // J. Chem. Phys. 1997. V. 106. P. 2012. https://doi.org/10.1063/1.473308
  18. Kisliuk P. // J. Phys. Chem. Solids. 1957. V 3. P. 95. https://doi.org/10.1016/0022-3697(57)90054-9
  19. Hasse W., Günter H.L., Henzler M. // Surf. Sci. 1983. V. 126. P. 479. https://doi.org/10.1016/0039-6028(83)90746-X
  20. Stuckless J.T., Al-Sarraf N., Wartnaby C., King D.A. // J. Chem. Phys. 1993. V. 99. P. 2202. https://doi.org/10.1063/1.465282
  21. Winkler A., Rendulic K.D. // Surf. Sci. 1982. V. 118. P. 19. https://doi.org/10.1016/0039-6028(82)90010-3
  22. Brown W.A., Kose R., King D.A. // Chem. Rev. 1998. V. 98. P. 797. https://doi.org/10.1021/cr9700890
  23. Klimesch P., Henzler M. // Surf. Sci. 1979. V. 90. P. 57. https://doi.org/10.1016/0039-6028(79)90009-8
  24. Feigerle C.S., Desai S.R., Overbury S.H. // J. Chem. Phys. 1990. V. 93. P. 787. https://doi.org/10.1063/1.459532
  25. Madix R.J., Ertl G., Christmann K. // Chem. Phys. Lett. 1979. V. 62. P. 38. https://doi.org/10.1016/0009-2614(79)80408-X
  26. Delgado K.H., Maier L., Tischer S., Zellner A., Stotz H., Deutschmann O. // Catalysts. 2015. V. 5. P. 871. https://doi.org/10.3390/catal5020871
  27. Yang W.S., Xiang H.W., Li Y.W., Sun Y.H. // Catal. Today. 2000. V. 61. P. 237. https://doi.org/10.1016/S0920-5861(00)00368-0
  28. Maier L., Schädel B., Delgado K.H., Tischer S., Deutschmann O. // Top. Catal. 2011. V. 54. P. 845. https://doi.org/10.1007/s11244-011-9702-1
  29. Monnerat B., Kiwi-Minsker L., Renken A. // Chem. Eng. Sci. 2003. V. 58. P. 4911. https://doi.org/10.1016/j.ces.2002.11.006
  30. Sales B.C., Turner J.E., Maple M.B. // Surf. Sci. 1982. V. 114. P. 381. https://doi.org/10.1016/0039-6028(82)90692-6
  31. Bychkov V.Yu., Tulenin Yu.P., Slinko M.M., Gordienko Yu.A., Korchak V.N. // Catal. Lett. 2018. V. 148. P. 653. https://doi.org/10.1007/s10562-017-2283-2
  32. Makeev A.G., Peskov N.V., Semendyaeva N.L., Slinko M.M., Bychkov V.Yu., Korchak V.N. // Chem. Eng. Sci. 2019. V. 207. P. 644. https://doi.org/10.1016/j.ces.2019.06.053
  33. Bowker M. // Top. Catal. 2016. V. 59. P. 663. https://doi.org/10.1007/s11244-016-0538-6
  34. Zuhr R.A., Hudson J.B. // Surf. Sci. 1977. V. 66. P. 405. https://doi.org/10.1016/0039-6028(77)90028-0
  35. Behm R.J., Ertl G., Penka V. // Surf. Sci. 1985. V. 160. P. 387. https://doi.org/10.1016/0039-6028(85)90782-4

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Regular oscillations of reactant and product concentrations in ethylene oxidation at 700°C.

Download (1MB)
3. Fig. 2. Complex mixed-mode oscillations obtained when cooling the reactor to 660°C.

Download (1MB)
4. Fig. 3. Complex aperiodic oscillations obtained when cooling the reactor to 640°C.

Download (1MB)
5. Fig. 4. Regular oscillations of partial pressures of reactants and reaction products (a) and surface coverage by adsorbed species (b) in model (2),(4) with initial conditions (5) at Tg = 973 K, s1 = 0.72, s2 = 0.13 and other parameters given in Tables 1–2.

Download (1MB)
6. Fig. 5. Complex mixed-mode oscillations of partial pressures of reactants and reaction products (a) and surface coverages by adsorbed species (b) in model (2),(4) at Tg = 933 K, s1 = 0.71, s2 = 0.121.

Download (2MB)
7. Fig. 6. Complex aperiodic oscillations of partial pressures of reactants and reaction products (a) and surface coverage by adsorbed species (b) in model (2),(4) at Tg = 913 K, s1 = 0.70, s2 = 0.112.

Download (1MB)
8. Fig. 7. (a) Oscillations of catalyst surface coverage by carbon and CO, as well as by free active sites; (b) oscillations of surface coverage by oxygen and Ni oxide, observed in model (2),(4). Temperature 933 K, ethylene pressure 5015 Pa, s1 = 0.71, s2 = 0.121.

Download (987KB)
9. Fig. 8. Oscillations of concentrations of reactants and reaction products in the gas phase (a) and surface coverages by adsorbed species and vacant adsorption sites (b–g) due to surface carbonization. Temperature 933 K, ethylene pressure 5610 Pa.

Download (2MB)

Copyright (c) 2025 Russian Academy of Sciences