Catalytic properties of a nanozyme based on silver nanoparticles immobilized in a polymethacrylate matrix

Abstract

This article presents studies on the catalytic, peroxidase-like properties of silver nanoparticles (Ag NPs) immobilized in polymethacrylate matrix (PMM). Ag NPs were prepared by thermal reduction of silver cations pre-immobilized in PMM. The morphology of the nanocomposite was studied using scanning electron microscopy, and the average size of the synthesized individual spherical nanoparticles was 18 ± 5 nm. It was demonstrated that silver nanoparticles immobilized in a polymethacrylate matrix (PMM-Ag0) exhibit pronounced peroxidase-like activity in the oxidation reaction of the chromogenic substrate – indigocarmine in the presence of H₂O₂. The Michaelis–Menten model was used to assess the kinetic parameters of the reaction. The values of Michaelis constant (Km) observed for indigocarmine and H₂O₂ (0.1 mM and 1.0 mM, respectively) show strong affinity of the substrates to silver nanoparticles in PMM.

Full Text

Restricted Access

About the authors

S. K. Bragina

National Research Tomsk State University

Author for correspondence.
Email: braginask@gmail.com
Russian Federation, Lenin Ave., 36, Tomsk, 634050

N. A. Gavrilenko

National Research Tomsk State University

Email: braginask@gmail.com
Russian Federation, Lenin Ave., 36, Tomsk, 634050

N. V. Saranchina

National Research Tomsk State University

Email: braginask@gmail.com
Russian Federation, Lenin Ave., 36, Tomsk, 634050

M. A. Gavrilenko

National Research Tomsk Polytechnic University

Email: braginask@gmail.com
Russian Federation, Lenin Ave., 30, Tomsk, 634050

References

  1. Zhang R., Yan X., Fan K. // Acc. Mater. Res. 2021. V. 2. P. 534.
  2. Tang G., He J., Liu J., Yan X., Fan K. // Exploration. 2021. V. 1. № 1. Р. 75.
  3. Li X., Zhu H., Liu P., Wang M., Pan J., Qiu F., Ni L., Niu X. // TrAC Trend. Anal. Chem. 2021. V. 143. 116379.
  4. Alula M.T., Feke K. // J. Clust. Sci. 2023. V. 34. № 1. Р. 614.
  5. Yan W.U., Zhou J.M., Jiang Y.S., Wen L.I., Meng-Jie H.E., Xiao Y., Chen J.Y. // Chin. J. Anal. Chem. 2022. V. 50. № 12. 100187.
  6. Cui Y., Lai X., Liang B., Liang Y., Sun H., Wang L. // ACS Omega. 2020. V. 5. № 12. Р. 6804.
  7. Wang H., Wan K., Shi X. // Adv. Mater. 2019. V. 31. № 45. 1805368.
  8. Jiang C., Wei X., Bao S., Tu H., Wang W. // RSC Adv. 2019. V. 9. № 71. 41568.
  9. Li D., Tian R., Kang S., Chu X.Q., Ge D., Chen X. // Food Chem. 2022. V. 393. 133386.
  10. Karim M.N., Anderson S.R., Singh S., Ramanathan R., Bansal V. // Biosens. Bioelectron. 2018. V. 110. P. 8.
  11. Saranchina N.V., Bazhenova O.A., Bragina S.K., Semin V.O., Gavrilenko N.A., Volgina T.N., Gavrilenko M.A. // Talanta. 2024. V. 275. 126159.
  12. Bragina S.K., Bazhenova O.A., Gavrilenko M.M., Chubik M.V., Saranchina N.V., Volgina T.N., Gavrilenko N.A. // Mendeleev Commun. 2023. V. 33. № 2. P. 263.
  13. Gavrilenko N.A., Saranchina N.V. // J. Anal. Chem. 2010. V. 65. № 2. Р. 153.
  14. Tolstov A.L., Lebedev E.V. // Theor. Exp. Chem. 2012. V. 48. № 4. P. 211.
  15. Lian J., Yin D., Zhao S., Zhu X., Liu Q., Zhang X., Zhang X. // Colloid Surface A. 2020. V. 603. 125283.
  16. Lian Q., Chen L., Peng G., Zheng X., Liu Z., Wu S. // Chem. Phys. 2023. V. 570. 111895.
  17. Darabdhara G., Sharma B., Das M.R., Boukherroub R., Szunerits S. // Sensor. Actuat. B: Chem. 2017. V. 238. P. 851.
  18. Jiang C., Bai Z., Yuan F., Ruan Z., Wang W. // Spectrochim. Acta A. 2022. Vol. 265. 120348.
  19. Wei F., Cui X., Wang Z., Dong C., Li J., Han X. // Chem. Eng. J. 2021. V. 408. 127240.
  20. Alula M.T., Hendricks-Leukes N.R. // Spectrochim. Acta A. 2024. V. 322. 124830.
  21. Mazhani M., Alula M.T., Murape D. // Anal. Chim. Acta. 2020. V. 1107. P. 193.
  22. Khagar P., Bagde A.D., Sarode B., Maldhure A.V., Wankhade A.V. // Inorg. Chem. Commun. 2022. V. 141. 109622.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Absorption spectra of PMM-Ag0 at different Ag contents in PMM depending on the contact time with AgNO3 solution: 1 – 4 min (aAg = 0.56 wt.%); 2 – 3 min (aAg = 0.29 wt.%); 3 – 2 min (aAg = 0.17 wt.%).

Download (526KB)
3. Fig. 2. Absorption spectra of PMM-Ag0 at different storage times.

Download (676KB)
4. Fig. 3. SEM images of Ag nanoparticles in PMM obtained by thermal reduction, at scales of 2 μm (a) and 400 nm (b).

Download (1MB)
5. Fig. 4. Size distribution of Ag nanoparticles in PMM.

Download (1MB)
6. Fig. 5. Photograph and absorption spectra of solutions: 1 – indigo carmine, 2 – indigo carmine + H2O2, 3 – indigo carmine + PMM-Ag0, 4 – indigo carmine + H2O2 + PMM-Ag0. Cindigo carmine = 2.2 × 10–4 M, CH2O2 = 2.7 × 10–3 M, pH 4.0, reaction time – 50 min.

Download (603KB)
7. Fig. 6. Dependence of indigo carmine conversion (ΔA/A0) on reaction conditions: a – Ag nanoparticle content in PMM, b – pH value, c – temperature. Reaction conditions: Cindigo carmine = 2.2 × 10–4 M, CH2O2 = 2.7 × 10–3 M.

Download (1MB)
8. Fig. 7. Kinetic curves of indigo carmine concentration oxidized by H2O2 in the presence of PMM-Ag0 as a function of time: a – at an initial indigo carmine concentration of 9.5 × 10–4 M and initial H2O2 concentrations of 1.6 × 10–4 (1), 5.3 × 10–4 (2), 1.6 × 10–3 (3), 2.7 × 10–3 (4), and 3.7 × 10–3 M (5); b – at an initial H2O2 concentration of 2.6 × 10–3 M and initial indigo carmine concentrations of 2.0 × 10–5 (1), 3.9 × 10–5 (2), 1.1 × 10–4 (3), 1.9 × 10–4 (4), and 2.6 × 10–4 M (5).

Download (863KB)
9. Fig. 8. Curves of initial rate (V0) of indigo carmine oxidation in the presence of PMM-Ag0 versus initial concentrations of H2O2 (a) and indigo carmine (b) in the studied solutions. Graphs of V0 of indigo carmine oxidation in the presence of PMM-Ag0 versus initial concentrations of H2O2 (c) and indigo carmine (d) in Lineweaver–Burk coordinates.

Download (1MB)
10. Oxidation of indigo carmine

Download (538KB)

Copyright (c) 2025 Russian Academy of Sciences