Active and stable Ni/Al2O3–(Zr+Ce)O2 catalyst for syngas production via glycerol dry reforming
- Authors: Fionov Y.A.1, Semenova S.M.1, Khaibullin S.V.1, Fionova E.A.2, Bratchikova I.G.1, Kharlanov A.N.3, Zhukova A.I.1
-
Affiliations:
- Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University)
- MIREA – Russian Technological University
- Lomonosov Moscow State University, Faculty of Chemistry
- Issue: Vol 66, No 2 (2025)
- Pages: 126-135
- Section: VIII Международная научная школа-конференция молодых ученых “Катализ: от науки к промышленности” (30 сентября–3 октября 2024 г., Томск)
- URL: https://ruspoj.com/0453-8811/article/view/689887
- DOI: https://doi.org/10.31857/S0453881125020068
- EDN: https://elibrary.ru/SKRQTA
- ID: 689887
Cite item
Abstract
A nickel-based catalyst supported on alumina-zirconia-ceria oxides was investigated to evaluate its performance in the dry reforming of glycerol with CO₂. The reaction was carried out at 700°C, atmospheric pressure and a glycerol/CO₂ molar ratio of 1. The catalyst showed stable operation for 7 h and achieved glycerol and CO₂ conversions of 60 and 47%, respectively, with H₂ and CO yields of 48 and 58%. Thermogravimetric analysis revealed the presence of carbon deposits, which, however, did not result in a significant loss of activity. These results highlight the potential of the synthesized catalyst for glycerol conversion for the production of syngas and hydrogen from renewable feedstock.
Full Text

About the authors
Yu. A. Fionov
Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University)
Author for correspondence.
Email: fionovyuri@gmail.com
Department of Physical and Colloid Chemistry
Russian Federation, Miklukho-Maklaya St., 6, Moscow, 117198S. M. Semenova
Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University)
Email: fionovyuri@gmail.com
Department of Physical and Colloid Chemistry
Russian Federation, Miklukho-Maklaya St., 6, Moscow, 117198S. V. Khaibullin
Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University)
Email: fionovyuri@gmail.com
Department of Physical and Colloid Chemistry
Russian Federation, Miklukho-Maklaya St., 6, Moscow, 117198E. A. Fionova
MIREA – Russian Technological University
Email: fionovyuri@gmail.com
Department of Digital and Additive Technologies
Russian Federation, prosp. Vernadskogo, 78, bldg. 4, Moscow, 119454I. G. Bratchikova
Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University)
Email: fionovyuri@gmail.com
Department of Physical and Colloid Chemistry
Russian Federation, Miklukho-Maklaya St., 6, Moscow, 117198A. N. Kharlanov
Lomonosov Moscow State University, Faculty of Chemistry
Email: fionovyuri@gmail.com
Russian Federation, GSP-1, Leninskiye Gory, 1, bldg. 3, Moscow, 119991
A. I. Zhukova
Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University)
Email: pylinina@list.ru
Department of Physical and Colloid Chemistry
Russian Federation, Miklukho-Maklaya St., 6, Moscow, 117198References
- Kolesárová N., Hutňan M., Bodík I., Špalková V. // BioMed Res. Int. 2011. V. 2011. 126798. https://doi.org/10.1155/2011/126798
- Cheng C.K., Lim R.H., Ubil A., Chin S.Y., Gimbun J. // Adv. Mater. Phys. Chem. 2012. V. 2. 24B043. https://doi.org/10.4236/ampc.2012.24B043
- Schwengber C.A., Alves H.J., Schaffner R.A., Alves da Silva F., Sequinel R., Rossato Bach V., Ferracin R.J. // Renew. Sustain. Energy Rev. 2016. V. 58. P. 259. https://doi.org/10.1016/j.rser.2015.12.279
- Sadykov V.A., Simonov M.N., Belpalko Y.N., Bobrova L.N., Eremeev N.F., Arapova M.V., Smal’ E.A., Mezentseva N.V., Pavlova S.N. // Kinet. Catal. 2019. Vol. 60. № 5. Р. 582. https://doi.org/10.1134/S0023158419050082
- Sabri F., Idem R., Ibrahim H. // Ind. Eng. Chem. Res. 2018. V. 57. P. 2486. https://doi.org/10.1021/acs.iecr.7b04582
- Pairojpiriyakul T., Kiatkittipong W., Assabumrungrat S., Croiset E. // Int. J. Hydrogen Energy. 2014. V. 39. P. 159. https://doi.org/10.1016/j.ijhydene.2013.09.148
- Mohd Arif N.N., Zainal Abidin S., Osazuwa O.U., Vo D.-V.N., Azizan M.T. // Int. J. Hydrogen Energy. 2019. V. 44. P. 20857. https://doi.org/10.1016/j.ijhydene.2018.06.084
- Kamonsuangkasem K., Therdthianwong S., Therdthianwong A. // Fuel Process. Technol. 2013. V. 106. P. 695. https://doi.org/10.1016/j.fuproc.2012.10.003
- Iriondo A., Cambra J.F., Barrio V.L., Guemez M.B., Arias P.L., Sanchez-Sanchez M.C., Navarro R.M., Fierro J.L.G. // Appl. Catal. B: Environ. 2011. V. 106. P. 83. https://doi.org/10.1016/j.apcatb.2011.05.009
- Tamošiūnas A., Gimžauskaitė D., Aikas M., Uscila R., Zakarauskas K. // Int. J. Hydrogen Energy. 2022. V. 47. P. 12219. https://doi.org/10.1016/j.ijhydene.2021.06.203
- Sahraei O.A.Z., Larachi F., Abatzoglou N., Iliuta M.C. // Appl. Catal. B: Environ. 2017. V. 219. P. 183. https://doi.org/10.1016/j.apcatb.2017.07.039
- Lee H.C., Siew K.W., Khan M.R., Chin S.Y., Cheng C.K. // J. Energy Chem. 2014. V. 23. P. 645. https://doi.org/10.1016/S2095-4956(14)60196-0
- Siew K.W., Lee H.C., Gimbun J., Cheng C.K. // J. Energy Chem. 2014. V. 23. P. 15. https://doi.org/10.1016/S2095-4956(14)60112-1
- Siew K.W., Lee H.C., Gimbun J., Chin S.Y., Khan M.R., Taufiq-Yap Y.H., Cheng C.K. // Renew. Energy. 2015. V. 74. P. 441. https://doi.org/10.1016/j.renene.2014.08.048
- Wang X., Li M., Wang M., Wang H., Li S., Wang S., Ma X. // Fuel. 2009. V. 88. P. 2148. https://doi.org/10.1016/j.fuel.2009.01.015
- Yu J., Odriozola J.A., Reina T.R. // Catalysts. 2019. V. 9. P. 1015. https://doi.org/10.3390/catal9121015
- Bychkov V.Y., Tulenin Y.P., Gorensberg A.Y., Korchak V.N. // Kinet. Catal. 2021. V. 62. № 1. P. 181. https://doi.org/10.1134/S0023158421010018
- Bychkov V.Y., Tyulenin Y.P., Korchak V.N. // Kinet. Catal. 2003. V. 44. P. 353. https://doi.org/10.1023/A:1024494918755
- Roslan N.A., Zainal Abidin S., Osazuwa O.U., Chin S.Y., Taufiq-Yap Y.H. // Int. J. Hydrogen Energy. 2021. V. 46. P. 30959. https://doi.org/10.1016/j.ijhydene.2021.03.162
- Tavanarad M., Meshkani F., Rezaei M. // J. CO2 Util. 2018. V. 24. P. 298. https://doi.org/10.1016/j.jcou.2018.01.009
- Fionov Y., Khlusova K., Chuklina S., Mushtakov A., Fionov A., Zhukov D., Averin A., Zhukova A. // Fuel. 2024. V. 376. 132685. https://doi.org/10.1016/j.fuel.2024.132685
- Golestani Kashani M., Ramezani Y., Meshkani F. // Mater. Today Commun. 2024. V. 40. 109999. https://doi.org/10.1016/j.mtcomm.2024.109999
- Memarian Z., Meshkani F. // Fuel. 2025. In press. https://doi.org/10.1016/j.fuel.2025.134902
- Huang L., Li D., Tian D., Jiang L., Li Z., Wang H., Li K. // Energy Fuel. 2022. V. 36. № 10. P. 5102. https://doi.org/10.1021/acs.energyfuels.2c00523
- Zhukova A.I., Chuklina S.G., Maslenkova S.A. // Catal. Today. 2021. V. 379. P. 159. https://doi.org/10.1016/j.cattod.2021.02.015
- Zhukova A., Fionov Y., Semenova S., Khaibullin S., Chuklina S., Maslakov K., Zhukov D., Isaikina O., Mushtakov A., Fionov A. // J. Phys. Chem. C. 2024. V. 128. № 47. P. 20177. https://doi.org/10.1021/acs.jpcc.4c07213
- Salehi S., Alavi S.M., Rezaei M., Akbari E., Varbar M. // J. CO2 Util. 2024. V. 81. 102737. https://doi.org/10.1016/j.jcou.2024.102737
- Harun N., Gimbun J., Azizan M.T., Zainal Abidin S. // Bull. Chem. React. Eng. Catal. 2016. V. 11. № 2. P. 220. https://doi.org/10.9767/bcrec.11.2.553.220-229
- Golestani Kashani M., Ramezani Y., Meshkani F. // Mater. Res. Bull. 2025. V. 182. 113135. https://doi.org/10.1016/j.materresbull.2024.113135
- Roslan N.A., Zainal Abidin S., Osazuwa O.U., Chin S.Y., Taufiq-Yap Y.H. // Fuel. 2022. V. 314. 123050. https://doi.org/10.1016/j.fuel.2021.123050
- Lyu Y., Jocz J., Xu R., Stavitski E., Sievers C. // ACS Catal. 2020. V. 10. № 19. P. 11235. https://doi.org/10.1021/acscatal.0c02426
- Huang Y., Li X., Zhang Q., Vinokurov V.A., Huang W. // Fuel. 2022. V. 310. 122449. https://doi.org/10.1016/j.fuel.2021.122449
- Wang Z., Cao X.-M., Zhu J., Hu P. // J. Catal. 2014. V. 311. P. 469. https://doi.org/10.1016/j.jcat.2013.12.015
- Harun N., Gimbun J., Azizan M.T., Zainal Abidin S. // Bull. Chem. React. Eng. Catal. 2016. V. 11. P. 220. https://doi.org/10.9767/bcrec.11.2.553.220-229
- Donphai W., Faungnawakij K., Chareonpanich M., Limtrakul J. // Appl. Catal. A: Gen. 2014. V. 475. P. 16. https://doi.org/10.1016/j.apcata.2014.01.014
- Zhukova A., Fionov Y., Chuklina S., Mikhalenko I., Fionov A.V., Isaikina O., Zhukov D.Y., de Lima A.M. // Energy Fuel. 2024. V. 38. P. 482. https://doi.org/10.1021/acs.energyfuels.3c03421
- Zhang G., Wang Y., Li X., Bai Y., Zheng L., Wu L., Han X. // Ind. Eng. Chem. Res. 2018. V. 57. № 50. P. 17076. https://doi.org/10.1021/acs.iecr.8b03612
- Weiss B.P., Kim S.S., Kirschvink J.L., Kopp R.E., Sankaran M., Kobayashi A., Komeili A. // Earth Planet. Sci. Lett. 2004. V. 224. P. 73. https://doi.org/10.1016/j.epsl.2004.04.024
- Manukyan A.S., Mirzakhanyan A.A., Badalyan G.R., Shirinyan G.H., Fedorenko A.G., Lianguzov N.V., Yuzyuk Y.I., Bugaev L.A., Sharoyan E.G. // J. Nanopart. Res. 2012. V. 14. P. 982. https://doi.org/10.1007/s11051-012-0982-6
- Zhou L., Li L., Wei N., Li J., Basset J.-M. // ChemCatChem. 2015. V. 7. № 16. P. 2508. https://doi.org/10.1002/cctc.201500379
- Pegios N., Bliznuk V., Theofanidis S.A., Galvita V.V., Marin G.B., Palkovits R., Simeonov K. // Appl. Surf. Sci. 2018. V. 452. P. 239. https://doi.org/10.1016/j.apsusc.2018.04.229
- Bannov A.G., Popov M.V., Kurmashov P.B. // J. Therm. Anal. Calorim. 2020. V. 142. P. 349. https://doi.org/10.1007/s10973-020-09647-2
Supplementary files
