XPS study of [Ir(COD)Cl]2–L–SiO2 catalytic system

Abstract

The X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) spectroscopy were used to study the features of anchoring of the [Ir2(COD)2Cl2] complex on the surface of modified silica gel L–SiO2 (where L is NC5H5–CH2–CH2–, N(CH3)2–CH2–CH2–CH2–, NH2–C3H6–) depending on the nature of the linker and the conditions of preparation of the systems. The catalytic activity was tested in reactions of gas-phase selective hydrogenation of propylene with parahydrogen (p-H2). According to the XPS data, a single-site iridium catalyst is prepared in all cases. Analysis of the XPS spectra indicates the possibility of anchoring the complex through one of the Ir atoms while preserving the dimer. It was shown that at different durations of interaction of the iridium complex solution with modified NH2–C3H6– silica gel approximately the same amount of the complex is anchored, but the nature of the complex coordination changes. For the sample obtained by long-term interaction of the complex solution with the modified support (24 h), a high increase in the NMR signal was observed at 60°C, while in the case of the sample prepared by short-term interaction (1 h), the signal increased with a rise in temperature to 80°C.

Full Text

Restricted Access

About the authors

A. V. Nartova

Boreskov Institute of Catalysis SB RAS

Author for correspondence.
Email: nartova@catalysis.ru
Russian Federation, Acad. Lavrentieva ave., 5, Novosibirsk, 630090

K. G. Donskikh

Boreskov Institute of Catalysis SB RAS

Email: nartova@catalysis.ru
Russian Federation, Acad. Lavrentieva ave., 5, Novosibirsk, 630090

R. I. Kvon

Boreskov Institute of Catalysis SB RAS

Email: nartova@catalysis.ru
Russian Federation, Acad. Lavrentieva ave., 5, Novosibirsk, 630090

L. M. Kovtunova

Boreskov Institute of Catalysis SB RAS; International Tomography Center SB RAS

Email: nartova@catalysis.ru
Russian Federation, Acad. Lavrentieva ave., 5, Novosibirsk, 630090; Institutskaya str., 3A, Novosibirsk, 630090

A. M. Dmitrachkov

Boreskov Institute of Catalysis SB RAS

Email: nartova@catalysis.ru
Russian Federation, Acad. Lavrentieva ave., 5, Novosibirsk, 630090

I. V. Skovpin

International Tomography Center SB RAS

Email: nartova@catalysis.ru
Russian Federation, Institutskaya str., 3A, Novosibirsk, 630090

I. V. Koptyug

International Tomography Center SB RAS

Email: nartova@catalysis.ru
Russian Federation, Institutskaya str., 3A, Novosibirsk, 630090

V. I. Bukhtiyarov

Boreskov Institute of Catalysis SB RAS

Email: nartova@catalysis.ru
Russian Federation, Acad. Lavrentieva ave., 5, Novosibirsk, 630090

References

  1. The Handbook of Homogeneous Hydrogenation. J.G. de Vries, C.J. Elsevier, Eds, Wiley-VCH: Weinheim, 2007.
  2. Skovpin I.V., Kovtunova L.M., Nartova A.V., Kvon R.I., Bukhtiyarov V.I., Koptyug I.V. // Catal. Sci. Technol. 2022. V. 12. P. 3247. https://doi.org/10.1039/D1CY02258J
  3. Encyclopedia of Reagents for Organic Synthesis. Wetcott S.A., Parthasaraty S., Gilder P.G., Colacot T.J. Eds., John Wiley & Sons: Hoboken, NJ, 2018.
  4. Hesp K.D., Stradiotto M. // Org. Lett. 2009. V. 11. P. 1449. https://doi.org/10.1021/ol900174f
  5. Motokura K., Ding S., Usui K., Kong Y. // ACS Catal. 2021. V. 11. P. 11985. https://doi.org/10.1021/acscatal.1c03426
  6. Skovpin I.V., Sviyazov S.V., Burueva D.B., Kovtunova L.M., Nartova A.V., Kvon R.I., Bukhtiyarov V.I., Koptyug I.V. // Dokl. Phys. Chem. 2023. V. 512. P. 149. https://doi.org/10.1134/S0012501623600237
  7. Lazaro G., Iglesias M., Femandez-Alvarez F.J., Sanz Miguel P.J., Perez-Torrente J.J., Oro L.A. // ChemCatChem. 2013. V. 5. P. 1133. https://doi.org/10.1002/cctc.201200309
  8. Zhang S., Wang H., Li M., Han J., Liu X., Gong J. // Chem. Sci. 2017. V. 8. P. 4489. https://doi.org/10.1039/c7sc00713b
  9. Esfandiari M., Havaei G., Zahiri S., Mohammadnezhad G. // Coord. Chem. Rev. 2022. V. 472. 214778. https://doi.org/10.1016/j.ccr.2022.214778
  10. Nartova A.V., Kvon R.I, Kovtunova L.M, Skovpin I.V., Koptyug I.V., Bukhtiyarov V.I. // Int. J. Mol. Sci. 2023. V. 24. P. 15643. https://doi.org/10.3390/ijms242115643
  11. Skovpin I.V., Burueva D.B., Kovtunova L.M., Nartova A.V, Kvon R.I., Bukhtiyarov V.I., Koptyug I.V. // Appl. Magn. Reson. 2024. V. 55. P. 1275. https://doi.org/10.1007/s00723-024-01660-0
  12. Buljubasich L., Franzoni M.B., Münnemann K. // Top. Curr. Chem. 2013. V. 338. P. 33. https://doi.org/10.1007/128_2013_420
  13. Gutmann T, Ratajczyk T., Xu Y., Breitzke H., Grunberg A., Dillenberger S., Bommerich U., Trantzschel T., Bernarding J., Buntkowsky G. // Solid State NMR. 2010. V. 38. P. 90. https://doi.org/10.1016/j.ssnmr.2011.03.001
  14. Duckett S.B., Mewis R.E. // Acc. Chem. Res. 2012. V. 45. P. 1247. https://doi.org/10.1016/S0079-6565(98)00027-2
  15. Bowers C.R., Weitekamp D.P. // J. Am. Chem. Soc. 1987. V. 109. P. 5541. https://doi.org/10.1021/ja00252a049
  16. Bouchard L.-S., Kovtunov K., Burt S., Anwar M., Koptyug I., Sagdeev R., Pines A. // Angew. Chem. Int. Ed. Engl. 2007.V. 46. P. 4064. https://doi.org/10.1002/anie.200700830
  17. Mondloch J.E, Wang Q., Frenkel A.I., Finke R.G. // J. Am. Chem. Soc. 2010. V. 132. P. 9701. https://doi.org/10.1021/ja1030062
  18. Moulder J.F., Stckle W.F., Sobol P.E., Bomben K.D. Handbook of X-ray Photoelectron Spectroscopy. J. Chastain Eds. Eden Prairie. MN: Perkin-Elmer, 1992.
  19. Surface Analysis by Auger and X-ray Photoelectron Spectroscopy. D. Briggs, J.T. Grant, Eds. IM Publications and SurfaceSpectra Limited, Cromwell Press, Trowbridge, UK, 2003.
  20. Fernando N.K., Cairns A.B., Murray C.A., Thompson A.L., Dickerson J.L., Garman E.F., Ahmed N., Ratcliff L.E., Regoutz A. // J. Phys. Chem. 2021. V. 125. P. 7473. https://doi.org/10.1021/acs.jpca.1c05759
  21. Using XPS PEAK Version 4.1. http://sun.phy.cuhk.edu.hk/ ~surface/XPSPEAK/XPSPEAKusersguide.doc [Electronic resource]
  22. Lea A.S., Swanson K.R., Haack J.N., Castle J.E., Tougaard S., Baer D.R. // Surf. Interf. Anal. 2010. V. 42. P. 1061. https://doi.org/10.1002/sia.3304
  23. Nartova A.V., Kvon R.I., Kovtunova L.M., Dmitrachkov A.M., Skovpin I.V., Bukhtiyarov V.I. // Kinet. Catal. 2024. V. 65. № 2. P. 202. https://doi.org/10.1134/s0023158423601213
  24. Groom C.R., Bruno I.J., Lightfoot M.P., Ward S.C. // Acta Cryst. 2016. V. 72. P. 171. https://doi.org/10.1107/S2052520616003954

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Change in the intensity of the Cl2p line during a 12-hour measurement of the NH2-1h sample.

Download (956KB)
3. Fig. 2. XPS spectra of the Ir4f region for freshly prepared NH2-1h and NH2-24h samples.

Download (601KB)
4. Fig. 3. Possible modes of complex anchoring on the surface of modified SiO2: I – linker coordination through one iridium atom with retention of the dimer [Ir2(COD)2Cl2]; II – coordination of two neighboring linkers through both iridium atoms with retention of the dimer [Ir2(COD)2Cl2]; III – coordination to the linker by a monomer [Ir(COD)Cl] with dimer cleavage.

Download (716KB)
5. Fig. 4. NMR signal enhancement (a) and propylene conversion (b) in the gas-phase selective hydrogenation of propylene by parahydrogen for NH2-1h and NH2-24h samples.

Download (1MB)
6. Fig. 5. XPS spectra of the Ir4f region for NH2-1h (a) and NH2-24h (b) samples after the gas-phase selective hydrogenation of propylene by parahydrogen.

Download (1MB)

Copyright (c) 2025 Russian Academy of Sciences