High-Quality RNA Extraction and Evaluation of Reference Genes for qPCR Assay of Pinus sylvestris L. Trunk Tissues
- Authors: Moshchenskaya Y.L.1, Galibina N.A.1, Korzhenevskiy M.A.1, Tarelkina T.V.1, Nikerova K.M.1, Chirva O.V.1
-
Affiliations:
- Forest Research Institute of the Karelian Research Centre of the Russian Academy of Sciences
- Issue: Vol 54, No 1 (2023)
- Pages: 27-40
- Section: Original study articles
- URL: https://ruspoj.com/0475-1450/article/view/669958
- DOI: https://doi.org/10.31857/S0475145023010093
- EDN: https://elibrary.ru/FRMYSQ
- ID: 669958
Cite item
Abstract
Scots pine (Pinus sylvestris L.) is a species of tree with heartwood (HW), which is forming during aging of sapwood (SW). Due to clear-cut border between SW and HW P. sylvestris should be used as a model woody plant for studying patterns of HW formation. Currently, molecular genetic methods are used to study the processes of trunk tissues formation in woody plants often. A feature of trunk tissues of coniferous trees is a high content of secondary metabolites, a low content of nucleic acids, and potential partial degradation of RNA. In this work we discuss the choice of most successful method for extraction a high-quality RNA for real-time PCR (RT-PCR) in P. sylvestris trunk tissues along the radial vector “conductive phloem/cambial zone – differentiating xylem – exterior part of SW (1–2 annual rings) – interior part of SW (1–2 annual rings afore transition zone (TZ)) – TZ (2 annual rings afore HW)” for reproducible RT-PCR data. The expression stability of six potential reference genes (Actin1, α-Tubulin, β-Tubulin, Ef1a, GAPDH, UBQ) was assessed in all describe tissues. Differences in expression levels of target genes are shown by data normalization using reference genes with different stability of expression.
About the authors
Yu. L. Moshchenskaya
Forest Research Institute of the Karelian Research Centre of the Russian Academy of Sciences
Author for correspondence.
Email: moshchenskaya@krc.karelia.ru
Russian, Petrozavodsk
N. A. Galibina
Forest Research Institute of the Karelian Research Centre of the Russian Academy of Sciences
Email: moshchenskaya@krc.karelia.ru
Russian, Petrozavodsk
M. A. Korzhenevskiy
Forest Research Institute of the Karelian Research Centre of the Russian Academy of Sciences
Email: moshchenskaya@krc.karelia.ru
Russian, Petrozavodsk
T. V. Tarelkina
Forest Research Institute of the Karelian Research Centre of the Russian Academy of Sciences
Email: moshchenskaya@krc.karelia.ru
Russian, Petrozavodsk
K. M. Nikerova
Forest Research Institute of the Karelian Research Centre of the Russian Academy of Sciences
Email: moshchenskaya@krc.karelia.ru
Russian, Petrozavodsk
O. V. Chirva
Forest Research Institute of the Karelian Research Centre of the Russian Academy of Sciences
Email: moshchenskaya@krc.karelia.ru
Russian, Petrozavodsk
References
- Су М., Цзан В., Яо Н., Хуан М. Выделение высококачественной РНК из различных тканей Populus // Физиология растений. 2009. Т. 56. № 5. С. 791.
- Antonova G.F., Stasova V.V. Effects of environmental factors on wood formation in larch (Larix deciduas Ldb.) stems // Trees. 1997. V. 11. P. 462. https://doi.org/10.1007/PL00009687
- Bustin S.A., Beaulieu J.F., Huggett J., Jaggi R., Kibenge F.S., Olsvik P.A., Penning L.C., Toegel S. MIQE précis: Practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments // BMC Mol. Biol. 2010. V. 11. P. 74. https://doi.org/10.1186/1471-2199-11-74
- Bustin S.A., Benes V., Garson J.A., Hellemans J., Hugget J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., Vandesompele J., Wittwer C.T. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments // Clinical Chemistry. 2009. V. 55. P. 611. https://doi.org/10.1373/clinchem.2008.112797
- Chan K.L., Ho C.L., Namasivayam P., Napis S. A simple and rapid method for RNA isolation from plant tissues with high phenolic compounds and polysaccharides // Protocol Exchange. 2007. https://doi.org/10.1038/nprot.2007
- Chang E., Shi S., Liu J., Cheng T., Xue L., Yang X., Yang W., Lan Q., Jiang Z. Selection of reference genes for quantitative gene expression studies in Platycladus orientalis (Cupressaceae) Using real-time PCR // PLoS One. 2012. V. 7(3): e33278.https://doi.org/10.1371/journal.pone.0033278
- Chang S., Puryear J., Cairney J. A simple and efficient method for isolating RNA from pine trees // Plant Mol. Biol. Report. 1993. V. 11. P. 113.
- Chen H., Yang Z., Hu Y., Tan J., Jia J., Xu H., Chen X. Reference genes selection for quantitative gene expression studies in Pinus massoniana L. // Trees. 2016. V. 30. P. 685. https://doi.org/10.1371/journal.pone.0205182
- Chen Y., Weining S., Daggard G. Preparation of total RNA from a very small wheat embryo suitable for differential display // Ann. Appl. Biol. 2003. V. 143. P. 261. https://doi.org/10.1111/j.1744-7348.2003.tb00293.x
- Chi X., Hu R., Yang Q., Zhang X., Pan L., Chen N., Chen M., Yang Z., Wang T., He Y., Yu S. Validation of reference genes for gene expression studies in peanut by quantitative real-time RT-PCR // Mol. Genet. Genomics. 2012. V. 287(2). P. 167. https://doi.org/10.1007/s00438-011-0665-5
- de Castro E., Sigrist C.J., Gattiker A., Bulliard V., Langendijk-Genevaux P.S., Gasteiger E., Bairoch A., Hulo N. ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins // Nucleic Acids Res. 2006. V. 34. P. 362. https://doi.org/10.1093/nar/gkl124
- Fischer U., Kucukoglu M., Helariutta Y., Bhalerao R.P. The dynamics of cambial stem cell activity // Annu. Rev. Plant Biol. 2019. V. 70. P. 293. https://doi.org/10.1146/annurev-arplant-050718-100402
- Ghawana S., Paul A., Kumar H., Kumar A., Singh H., Bhardwaj P.K., Rani A., Singh R.S., Raizada J., Singh K., Kumar S. An RNA isolation system for plant tissues rich in secondary metabolites // BMC Res. Notes. 2007. V. 4. P. 85. https://doi.org/10.1186/1756-0500-4-85
- Han X., Lu M., Chen Y., Zhan Z., Cui Q., Wang Y. Selection of reliable reference genes for gene expression studies using real-time PCR in tung tree during seed development // PLoS One. 2012. V. 7. P. e43084. https://doi.org/10.1371/journal.pone.0043084
- Kumar S., Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets // Mol. Biol. Evol. 2016. V. 33. P. 1870. https://doi.org/10.1093/molbev/msw054
- Lal L., Sahoo R., Gupta R.K., Sharma P., Kumar S. RNA isolation from highphenolic tea leaves and apical buds // Plant Mol. Biol. Rep. 2001. V. 19. P. 181a. https://doi.org/10.1007/BF02772161
- Lim K.J., Paasela T., Harju A., Venäläinen M., Paulin L., Auvinen P., Kärkkäinen K., Teeri T.H. Developmental changes in scots pine transcriptome during heartwood formation // Plant Physiol. 2016. V. 172. P. 1403. https://doi.org/10.1104/pp.16.01082
- Marchler-Bauer A., Bryant S.H. CD-Search: protein domain annotations on the fly Nucleic // Acids Res. 2004. V. 32. P. 327. https://doi.org/10.1093/nar/gkh454
- Meyer-Gauen G., Herbrand H., Pahnke J., Cerff R., Martin W. Gene structure, expression inEscherichia coliand biochemicalproperties of the NAD1-dependent glyceraldehyde-3-phosphatedehydrogenase from Pinus sylvestris chloroplasts // Gene. 1998. V. 209. P. 167. https://doi.org/10.1016/S0378-1119(98)00034-1
- Mo J., Xu J., Jin W., Yang L., Yin T., Shi J. Identification of reference genes for quantitative gene expression studies in Pinus massoniana and its introgression hybrid // Forests 2019. V. 10. P. 787. https://doi.org/10.3390/f10090787
- Niu X., Zhang G., Xu J., Tao A., Fang P., Su J. Selection of reliable reference genes for quantitative real-time PCR gene expression analysis in Jute (Corchorus capsularis) under stress treatments // Frontiers in Plant Science. 2015. V. 6. P. 848. https://doi.org/10.3389/fpls.2015.00848
- Ramakers C., Ruijter J.M., Deprez R.H., Moorman A.F. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data // Neurosci. Lett. 2003. V. 339. P. 62. https://doi.org/10.1016/S0304-3940(02)01423-4
- Saitou N., Nei M. The Neighbor-Joining Method – a new method for reconstructing phylogenetic trees // Mol. Biol. Evol. 1987. V. 4. P. 406. https://doi.org/10.1093/oxfordjournals.molbev.a040454
- Svec D., Tichopad A., Novosadova V., Pfaffl M.W., Kubista M. How good is a PCR efficiency estimate: recommendations for precise and robust qPCR efficiency assessments // Biomol. Detect. Quantif. 2015. V. 3. P. 9. https://doi.org/10.1016/j.bdq.2015.01.005
- Taylor S., Wakem M., Dijkman G., Alsarraj M., Nguyen M. A practical approach to RT-qPCR–Publishing data that conform to the MIQE guidelines // Methods. 2010. V. 50. P. S1. https://doi.org/10.1016/j.ymeth.2010.01.005
- Zhu P., Ma Y., Zhu L., Chen Y., Li R., Ji K. Selection of suitable reference genes in Pinus massoniana Lamb. under different abiotic stresses for qPCR normalization // Forests. 2019. V. 10. P. 632. https://doi.org/10.3390/f10080632
- Pfaffl M.W. A new mathematical model for relative quantification in real-time RT-PCR // Nucleic Acids Res. 2001. V. 29. P. E45. https://doi.org/10.1093/nar/29.9.e45
Supplementary files
