Adult stem cells in animals: a paradigm shift from a spongiologist perspective

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paradigm within which the scientific community views animal adult stem cells (ASCs) and the concept of “stemness” itself was changed significantly over the past five years. According to the previously dominant paradigm, formed during the study of mammals, adult stem cells are extremely few in number, committed lineage-specific cells; their fates are limited to the tissues/organs in which they are located. However, studies performed on aquatic invertebrates have shown that ASCs, on the contrary, are very numerous, morphologically diverse, and demonstrate a wide range of states and levels of “stemness”. Moreover, ASCs of a number of invertebrates can arise de novo by transdifferentiation from differentiated somatic cells. One of the key roles in the formation of the new paradigm was played by the study of representatives of the phylum Porifera. This brief review examines the state of the arts of the modern concept of stem cells and the role of spongiology in the formation of the new paradigm.

Full Text

Restricted Access

About the authors

A. V. Ereskovsky

Koltzov Institute of Developmental Biology RAS

Author for correspondence.
Email: aereskovsky@gmail.com
Russian Federation, Moscow

References

  1. Ефремова С.М. 1972. Морфофизиологический анализ развития пресноводных губок Ephydatia fluviatilis и Spongilla lacustris из диссоциированных клеток // Бесполое размножение, соматический эмбриогенез и регенерация. Ред. Б. П. Токин. Л.: Изд-во ЛГУ, 1972. C. 110–154.
  2. Короткова Г.П. 1981. Общая характеристика организации губок // Морфогенезы у губок. Ред. Короткова Г.П. и др. Труды Биол. ин-та ЛГУ, № 33. с. 5–51.
  3. Alié A., Hayashi T., Sugimura I. et al. (2015). The ancestral gene repertoire of animal stem cells // Proc. Natl. Acad. Sci. USA. 2015. V. 112. P. E7093–E7100.
  4. Arendt D., Musser J.M., Bake C. et al. (2016). The origin and evolution of cell types // Nature Reviews Genetics. 2015. V. 17. P. 744–757.
  5. Ballarin L., Karahan A., Salvetti A. et al. Stem cells and innate immunity in aquatic invertebrates: bridging two seemingly disparate disciplines for new discoveries in biology // Front. Immunol. 2021. V. 12. P. 688106.
  6. Ben-Hamo O., Rosner A., Rabinowitz C. et al. Coupling astogenic aging in the colonial tunicate Botryllus schlosseri with the stress protein mortalin // Dev. Biol. 2018. V. 433. P. 33–46.
  7. Cheung T.H., Rando T. A. Molecular regulation of stem cell quiescence // Nat. Rev. Mol. Cell Biol. 2013. V. 14. P. 329–40. https://doi.org/10.1038/nrm3591
  8. Clevers H., Watt F.M. Defining adult stem cells by function, not by phenotype // Ann. Rev. Biochemistry. 2018. V. 87. P. 1015–1027.
  9. Ereskovsky A.V. Stem cells cell in sponges (Porifera): an update // ISJ-Invert. Survival J. 2019. V. 16. P. 62–63. https://doi.org/10.25431/1824-307X/isj.v0i0.60-65
  10. Ereskovsky A., Lavrov A. Porifera // Invertebrate Histology. 2021. Elise E. B., LaDouceur E.E.B., Ed., John Wiley & Sons, Inc. P. 19–54. https://doi.org/10.1002/9781119507697.ch2
  11. Ereskovsky A., Borisenko I.E, Bolshakov F.V., Lavrov A.I. Whole-body regeneration in sponges: diversity, fine mechanisms and future prospects // Genes. 2021. V. 12, 506. https://doi.org/10.3390/genes12040506
  12. Ereskovsky A., Rinkevich B., Somorjai I.M.L. Adult stem cells host intracellular symbionts: The poriferan archetype // Advances in aquatic invertebrate stem cell research. Balarin L., Rinkevich B., Hobmayer B. Eds. 2022. MDPI Books. P. 80–108. https://doi.org/10.3390/books978-3-0365-16не36-3
  13. Ereskovsky A., Melnikov N.P., Lavrov A. Archaeocytes in sponges: simple cells of complicated fate // Biol. Rev. 2024. https://doi.org/10.1111/brv.13162
  14. Fraune S., Yuichi Abe Y., Bosch T. Disturbing epithelial homeostasis in the metazoan Hydra leads to drastic changes in associated microbiota // Environ. Microbiol. 2009. V. 11. P. 2361–2369.
  15. Funayama N. The cellular and molecular bases of the sponge stem cell systems underlying reproduction, homeostasis and regeneration // Internat. J. Dev. Biol. 2018. V. 62. P. 513–525.
  16. Funayama N., Nakatsukasa M., Hayashi T., Agata K. Isolation of the choanocyte in the fresh water sponge, Ephydatia fluviatilis and its lineage marker, Ef annexin // Dev. Growth Diff. 2005. V. 47. P. 243–253.
  17. Funayama N., Nakatsukasa M., Mohri K. et al. Piwi expression in archaeocytes and choanocytes in demosponges: insights into the stem cell system in demosponges // Evol. Dev. 2010. V. 12. P. 275–287.
  18. Gaino E., Rebora M., Corallini C., Lancioni T. 2003. The life-cycle of the sponge Ephydatia fluviatilis (L.) living on the reed Phragmites australis in an artificially regulated lake // Hydrobiologia. 2003. V. 495. P. 127–42.
  19. Grün D., Muraro M.J., Boisset J.C. et al. De novo prediction of stem cell identity using single-cell transcriptome data // Cell Stem. Cell. 2016. V. 19. P. 266–277.
  20. Hackett K., Lynn D., Williamson D. et al. Cultivation of the Drosophila sex-ratio spiroplasma // Science. 1986. V. 232. P. 1253–1255.
  21. Kobiałka M., Michalik A., Walczak M. et al. Sulcia symbiont of the leafhopper Macrosteles laevis (Ribaut, 1927) (Insecta, Hemiptera, Cicadellidae: Deltocephalinae) harbors Arsenophonus bacteria // Protoplasma. 2016. V. 253. P. 903–912.
  22. Levy S., Elek A., Grau-Bové X. et al. A stony coral cell atlas illuminates the molecular and cellular basis of coral symbiosis, calcification, and immunity // Cell. 2021. V. 11. P. 2973–2987.
  23. Li L., Xie T. Stem cell niche: structure and function // Annu. Rev. Cell Dev. Biol. 2005. V. 21. P. 605–631.
  24. Martinez P., Ballarin L., Ereskovsky A.V. et al. Articulating the “stem cell niche” paradigm through the lens of non-model aquatic Invertebrates // BMC Biology. 2022. V. 20:23. https://doi.org/10.1186/s12915-022-01230-5
  25. Mashanov V.S., Zueva O.R., Rojas-Catagena C., Garcia-Arraras J.E. Visceral regeneration in a sea cucumber involves extensive expression of survivin and mortalin homologs in the mesothelium // BMC Dev. Biol. 2010. V. 10, e117.
  26. Marescal O., Cheeseman I.M. Cellular mechanisms and regulation of quiescence // Developmental Cell. 2020. V. 55. P. 259–271.
  27. Melnikov N.P., Bolshakov F.V., Frolova V.S. et al. Tissue homeostasis in sponges: quantitative analysis of cell proliferation and apoptosis // J. Exp. Zool. Pt B: Mol. Dev. Evol. 2022. V. 338. P. 360–381 https://doi.org/10.1002/jez.b.23138
  28. Minchin E.A. (1900). Sponges — phylum Porifera // Treatise on Zoology. V. 2. The Porifera and Coelenterata. E. Ray Lankaster. Ed. P. 1–178. Adam and Charles Black, London.
  29. Moore N., Lyle S. Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance // J. Oncol. 2011. V. 2011, 396076. https://doi.org/10.1155/2011/396076
  30. Musser J.M., Schippers K.J., Nickel M. et al. Profiling cellular diversity in sponges informs animal cell type and nervous system evolution // Science. 2021. V. 374. P. 717–723.
  31. Nakanishi N., Jacobs D.K. The early evolution of cellular reprogramming in animals // Deferring Development: Setting Aside Cells for Future Use in Development and Evolution. 2020. (eds C. D. Bishop, B. K. Hall). P. 67–86. Boca Raton, FL: CRC Press.
  32. Okamoto K., Nakatsukasa M., Alié A. et al. The active stem cell specific expression of sponge Musashi homolog EflMsiA suggests its involvement in maintaining the stem cell state // Mechanisms Dev. 2012. V. 129. P. 24–37.
  33. Penrose L.S., Penrose R. Impossible objects: a special type of visual illusion // British Journal of Psychology. 1958. V. 49. P. 31–33. https://doi.org/10.1111/j.2044-8295.1958.tb00634.x
  34. Pflugfelder B., Cary C.S., Bright M. Dynamics of cell proliferation and apoptosis reflect different life strategies in hydrothermal vent and cold seep vestimentiferan tubeworms // Cell Tissue Res. 2009. V. 337. P. 149–165.
  35. Rinkevich B., Ballarin L., Martinez P. et al. A pan-metazoan concept for adult stem cells: The wobbling Penrose landscape // Biol. Rev. 2022. V. 97. P. 299–325. https://doi.org/10.1111/brv.12801
  36. Sebé-Pedros A., Chomsky E., Pang K. et al. Early metazoan cell type diversity and the evolution of multicellular gene regulation // Nature Ecol. Evol. 2018. V. 2. P. 1176–1188.
  37. Simpson T.L . The Cell Biology of Sponges. New York: Springer-Verlag, 1984. 662 p.
  38. Sogabe S., Hatleberg W.L., Kocot K.M. et al. Pluripotency and the origin of animal multicellularity // Nature. 2019. V. 570. P. 519–522.
  39. Wagner G.P. Devo-Evo of cell types // Evolutionary Developmental Biology. A Reference Guide. 2019. L. N. De La Rosa, G. B. Müller Eds. P. 511–528. Springer International Publishing, Cham.
  40. Waddington C.H. The Strategy of the Genes. London: Geo Allen & Unwin, 1957.
  41. Weissman I. L. Stem cells: units of development, units of regeneration, and units in evolution // Cell. 2000. V. 100. P. 157–168.
  42. Yun C.O., Bhargava P., Na Y. et al. Relevance of mortalin to cancer cell stemness and cancer therapy // Sci. Rep. 2017. V. 7. P. 42016.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Plasticity of animal somatic stem cells (somatic stem cells = adult stem cells = ASC). ASC are highlighted in color, differentiation products are shown in black and white diagrams. (a, b) Representatives of sponges: (a) Amphimedon queenslandica, Ephydatia fluviatilis; (b) Oscarella lobularis (ac — archaeocyte, cc — choanocyte, tc — thesocyte, sc — sclerocyte, lc — lophocytes, gc — granule cells, pc — pinacocytes, fc — follicular cells, g — gametes, vc — vacuolar cells, ap — apopilary cells). (c) Mammals (for comparison) (hsc — hematopoietic stem cells, msc — myeloid progenitors, lsc — lymphoid progenitors, mk — megakaryocyte, gr — granulocytes, mp — macrophages, rbc — red blood cells, tc — T cells, bc — B cells, nk — killer lymphocytes). Sponges are characterized by the conversion of one type of ASC into another, as well as the differentiation of gametes from ASC descendants. (From Rinkevich et al., 2022, with modifications; © 2021 The Authors, published by John Wiley & Sons Ltd. under a CC-BY-4.0 license.)

Download (297KB)
3. Fig. 2. A graphical metaphor for the new concept of somatic stem cells. (a) “Penrose oscillating landscape” by Rinkevich et al. (2022). The color code (from dark blue to light blue) shows the cell states (from totipotent to fully differentiated). Note that a cell (orange ball) can either “fall” to the lower light blue level from the funnel or return to the upper dark blue level via one or more ladders or ropes (from Rinkevich et al., 2022; © 2021 The Authors, published by John Wiley & Sons Ltd. under a CC BY4.0 license). (b) Penrose's staircase, one of his "impossible objects" (Penrose L. S., Penrose R., 1958) (image from https://en.wikipedia.org/wiki/Penrose_stairs). (c) Waddington landscape as applied to cell differentiation (orange ball); orange arrows show differentiation trajectories, brown circles show bifurcation (trajectory choice) points (adapted from Waddington C. H. © (1957) George Allen and Unwin (London)).

Download (396KB)
4. Fig. 3. Summary of the structure and properties of the stem cell (SC) niche in model organisms. The most important basic structures that are thought to define the SC are shown. At the top are listed four physiological properties associated with niche functionality. Below are shown the different components of the niche associated with SC activity: different cells, signaling molecules, and the extracellular matrix (modified from Martinez et al., 2022; © 2022 The Authors, published by BMC Biology under a CC-BY-4.0 license).

Download (441KB)
5. Fig. 4. Conceptual diagram representing three different types of stem cell niche architecture in metazoans. (a, b), (c, d), and (e, f) refer to three structural states (A, B, and C) defined to describe progressively more complex niche architectures and their localization in the animal body. CTVT, canine transmissible venereal tumor (modified from Martinez et al., 2022; © 2022 The Authors, published by BMC Biology under a CC-BY-4.0 license).

Download (309KB)
6. Fig. 5. Archaeocytes of different demospongia (data from transmission electron microscopy). (a) Ephydatia muelleri (order Spongillida); (b) Lubomirskia baicalensis (order Spongillida); (c) Spongia officinalis (order Dyctyoceratida); (d) Halisarca dujardinii (order Chondrillida); (e) Crellomima imparides (order Poecilosclerida); (e) Suberites domuncula (order Suberitida). n — nucleus; nu — nucleolus; ph — phagosome; zo — endosymbiotic zoochlorella. Scale bars: a, c–e = 2 μm; b = 5 μm (from Ereskovsky et al., 2024; permission to reproduce the figure was obtained from John Wiley and Sons, License Number 5916501382860).

Download (1017KB)

Copyright (c) 2024 Russian Academy of Sciences