Kinetics of the Diels‒Alder reaction of thiofluorenone with 9,10-dimethylanthracene

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The rate constants of the Diels-Alder reaction of thiofluorenone with 9,10-dimethylanthracene in toluene in the temperature range 15–35°C have been determined. Activation enthalpy and entropy have been calculated. Using NMR spectroscopy, mass spectrometry, and elemental analysis, the structure of thiofluorenone‒9,10-dimethylanthracene adduct has been determined.

Sobre autores

D. Kornilov

Ufa University of Science and Technology

Autor responsável pela correspondência
Email: Dima_himik2@mail.ru
ORCID ID: 0000-0002-6696-5820

Department of Chemistry

Rússia, ul. Z. Validy, 32, Ufa, 450076

A. Mustafin

Ufa University of Science and Technology

Email: Dima_himik2@mail.ru
ORCID ID: 0000-0002-8342-8787

Department of Chemistry

Rússia, ul. Z. Validy, 32, Ufa, 450076

Bibliografia

  1. Page P.C.B. Organosulfur Chemistry I. Berlin: Springer, 1999.
  2. Bolton J.R., Chen K.S., Lawrence A.H., Mayo P.D. J. Am. Chem. Soc. 1975, 97, 1832‒1837. doi: 10.1021/ja00840a039
  3. Scaiano J.C., Ingold K.U. J. Am. Chem. Soc. 1976, 98, 4727‒4732. doi: 10.1021/ja00432a006
  4. Alberti A., Bonini B.F., Pedulli G.F. Tetrahedron Lett. 1987, 28, 3737‒3740. doi: 10.1016/S0040–4039(00)96372-X
  5. Toy A.A., Chaffey-Millar H., Davis T.P., Stenzel M.H., Izgorodina E.I., Coote M.L., Barner-Kowollik C. Chem. Commun. 2006, 8, 835‒837. doi: 10.1039/B515561D
  6. Junkers T., Delaittre G., Chapman R., Gunzler F., Chernikova E., Barner-Kowollik C. Macromol. Rapid Commun. 2012, 33, 984‒990. doi: 10.1002/marc.201200128
  7. Zhong F., Hong C.-Y., Pan C.-Y. Macromol. Chem. Phys. 2018, 219, 1800143. doi: 10.1002/macp.201800143
  8. Yu H., Shao J., Chen D., Wang L., Yang W. Polym. Chem. 2020, 11, 3251‒3259. doi: 10.1039/D0PY00322K
  9. Cai Z.-J., Liu C.-X., Gu Q., You S.-L. Angew. Chem. Int. Ed. 2018, 57, 1296‒1299. doi: 10.1002/anie.201711451
  10. Cai Z.-J., Liu C.-X., Wang Q., Gu Q., You S.-L. Nat. Commun. 2019, 10, 4168. doi: 10.1038/s41467–019–12181-x
  11. Lin X., Pu M., Sang X., Li S., Liu X., Wu Y.-D., Feng X. Angew. Chem. Int. Ed. 2022, 61, e202201151. doi: 10.1002/anie.202201151
  12. Russel J.S. Prog. Heterocycl. Chem. 2020, 31, 119‒142. doi: 10.1016/B978–0–12–819962–6.00003–8
  13. Pathania S., Narang R.K., Rawal R.K. Eur. J. Med. Chem. 2019, 180, 486‒508. doi: 10.1016/j.ejmech.2019.07.043
  14. Dembitsky V.M., Gloriozova T.A., Poroikov V.V. J. Pharm. Res. Int. 2017, 18, 1‒19. doi: 10.9734/JPRI/2017/36196
  15. Huisgen R., Fisera L., Giera H., Sustmann R. J. Am. Chem. Soc. 1995, 117, 9671‒9678. doi: 10.1021/ja00143a008
  16. Николаев В.А., Иванов А.В., Шахмин А.А., Schulze B., Родина Л.Л. ЖОрХ. 2011, 47, 1873‒1875. [Nikolaev V.A., Ivanov A.V., Shakhmin, A.A., Schulze B., Rodina L.L. Russ. J. Org. Chem. 2011, 47, 1911‒1913.] doi: 10.1134/S107042801112027X
  17. Rohr U., Schatz J., Sauer J. Eur. J. Org. Chem. 1998, 1998, 2875‒2883. 10.1002/(SICI)1099-0690(199812)1998:12%3C2875::AID-EJOC2875%3E3.0.CO;2-N
  18. Carrillo J.-C., van der Wiel A., Danneels D., Kral O., Boogaard P.J. Regul. Toxicol. Pharmacol. 2019, 106, 316‒333. doi: 10.1016/j.yrtph.2019.05.012
  19. La Voie E.J., Coleman D.T., Rice J.E., Geddie N.G., Hoffmann D. Carcinogenesis. 1985, 6, 1483‒1488. doi: 10.1093/carcin/6.10.1483
  20. Kaden D.A., Hites R.A., Thilly W.G. Cancer Res. 1979, 39, 4152‒4159.
  21. Asada S., Sasaki K., Tanaka N., Takeda K., Hayashi M., Umeda M. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2005, 588, 7‒21. doi: 10.1016/j.mrgentox.2005.07.011
  22. Jellinck P.H., Smith G. Biochem. Pharmacol. 1972, 21, 1603‒1608. doi: 10.1016/0006–2952(72)90310–3
  23. Корнилов Д.А., Киселев В.Д, Аникин О.В., Колесникова А.О., Шулятьев А.А. ЖОрХ. 2019, 55, 17‒21. [Kornilov D.A., Kiselev V.D., Anikin O.V., Kolesnikova A.O., Shulyatiev A.A. Russ. J. Org. Chem. 2019, 55, 7–10.] doi: 10.1134/S1070428019010020
  24. Kornilov D.A. Anikin O.V., Kolesnikova A.O., Bermeshev M.V., Gubaidullin A.T., Kiselev V.D. Int. J. Chem. Kinet. 2019, 51, 405–411. doi: 10.1002/kin.21264
  25. Киселев В.Д., Корнилов Д.А., Аникин О.В., Племенков В.В., Коновалов А.И. ЖОрХ. 2018, 54, 1073–1077. [Kiselev V.D., Kornilov D.A., Anikin O.V., Plemenkov V.V., Konovalov A.I. Russ. J. Org. Chem. 2018, 54, 1080–1084.] doi: 10.1134/S1070428018070187
  26. Kiselev V.D., Kornilov D.A., Anikin O.V., Shulyatiev A.A., Kolesnikova A.O., Konovalov A.I. Int. J. Chem. Kinet. 2018, 50, 651–658. doi: 10.1002/kin.21189
  27. Киселев В.Д., Корнилов Д.А., Аникин О.В., Седов И.А., Коновалов А.И. ЖОрХ. 2017, 53, 1828–1833. [Kiselev V.D., Kornilov D.A., Anikin O.V., Sedov I.A., Konovalov A.I. Russ. J. Org. Chem. 2017, 53, 1864–1869.] doi: 10.1134/S1070428017120144
  28. Kiselev V.D., Kornilov D.A., Konovalov A.I. Int. J. Chem. Kinet. 2017, 49, 562–575. doi: 10.1002/kin.21094
  29. Kiselev V.D., Kornilov D.A., Lekomtseva I.I, Konovalov A.I. Int. J. Chem. Kinet. 2015, 47, 289–301. doi: 10.1002/kin.20908
  30. Kiselev V.D., Konovalov A.I. J. Phys. Org. Chem. 2009, 22, 466–483. doi: 10.1002/poc.1503
  31. Bieri G., Burger F., Heilbronner E., Maier J.P. Helv. Chim. Acta, 1977, 60, 2213–2233. doi: 10.1002/hlca.19770600714
  32. Riddick J.A., Bunger W.B., Sakano T.K. Organic Solvents: Physical Properties and Methods of Purification, 4th ed. New York: Wiley, 1986.
  33. Scheibye S., Shabana R., Lawesson S.-O., Romming C. Tetrahedron. 1982, 38, 993–1001. doi: 10.1016/0040–4020(82)85078–3

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024