Effect of boundary roughness on the variability of the I-V data of silicon field-effect GAA nanotransistors
- Authors: Masalsky N.V.1
-
Affiliations:
- Kurchatov Institute
- Issue: Vol 54, No 2 (2025)
- Pages: 152-163
- Section: NANOTRANSISTORS
- URL: https://ruspoj.com/0544-1269/article/view/687126
- DOI: https://doi.org/10.31857/S0544126925020052
- EDN: https://elibrary.ru/FUWFFX
- ID: 687126
Cite item
Abstract
The influence of various sources of variability on transistor performance increases with the transition to three-dimensional architectures, and the roughness boundary of the transistor's working area is one of the main factors contributing to this increase. In this paper, the variability of the key parameters of silicon field-effect GAA nanotransistors with an unalloyed cylindrical working area with different working area lengths from 25 to 10 nm is investigated to demonstrate the effect of scaling. Fluctuations in the characteristics are analyzed for two values of correlation lengths of 10 nm and 20 nm and a range of RMS values of boundary deviations in the range from 0.4 to 0.85 nm. For the key parameters under study, threshold voltage, Ion and Ioff currents, the standard deviation values for transistor structures with different channel lengths differ by about 2 times. At the same time, the patterns of variability of key parameters are functionally different. The consequence of this is that the methods for optimizing the effect of variability are not scalable due to the effect of boundary roughness.
Full Text

About the authors
N. V. Masalsky
Kurchatov Institute
Author for correspondence.
Email: volkov@niisi.ras.ru
Russian Federation, Moscow
References
- International Roadmap for Devices and Systems: More Moore, IRDS // Piscataway, NJ, USA, 2021. https://irds.ieee.org/
- Li M., Yeo K.H., Suk S.D., Yeoh Y.Y., Kim D.W., Chung T.Y., Oh K.S., Lee W.S. Sub-10 nm gate-all-around CMOS nanowire transistors on bulk Si substrate // In Proceedings of the IEEE Symposium on VLSI Technology (VLSI), Kyoto, Japan, 15–17 June 2009. P. 94–95. ISBN: 978-1-4244-3308-7.
- Kim D.W., Yeo K., Suk S.D., Li M., Yeoh Y.Y., Sohn D.K., Chung C. Fabrication and electrical characteristics of self-aligned (SA) gate-all-around (GAA) Si nanowire MOSFETs (SNWFET) // In Proceedings of the IEEE International Conference on Integrated Circuit Design and Technology, Grenoble, France, 2–4 June 2010. P. 63–66. https://doi.org/10.1109/ICICDT.2010.5510288
- Pan D.Z., Yu B., Gao J-R. Design for Manufacturing With Emerging Nanolithography // IEEE Trans. on Computer Aided Design of Integrated Circuits and Systems. 2013. V. 32. Nо. 10. Р. 1453–1472. https://doi.org/10.1109/TCAD.2013.2276751
- Miakonkikh A.V., Tatarintsev A.A., Rogozhin A.E., Rudenko K.V. Technology for fabrication of sub-20 nm silicon planar nanowires array // Proc. SPIE 10224, The International Society for Optical Engineering, 2016. Art. No. 102241V (30 December 2016). https://doi.org/10.1117/12.2267112
- Bansal A.K., Gupta C., Gupta A., Singh R., Hook T.B., Dixit A. 3-D LER and RDF matching performance of nanowire FETs in inversion, accumulation, and junctionless modes // IEEE Trans. Electron Devices. 2018. V. 65. P. 1246–1252. https://doi.org/10.1109/TED.2018.2797799
- Espiñeira G., Nagy D., Indalecio G., García-Loureiro A.J., Kalna K., Seoane N. Impact of gate edge roughness variability on FinFET and gate-all-around nanowire FET // IEEE Electron Device Lett. 2019. V. 40. P. 510–513. https://doi.org/10.1109/LED.2019.2900494
- Lee J., Park T., Ahn H., Kwak J., Moon T., Shin C. Prediction model for random variation in FinFET induced by line-edge-roughness (LER) // Electronics. 2012. V. 10. Nо. 4. P. 455–461. https://doi.org/10.3390/electronics10040455
- Tehranipoor M.M., Guin U., Forte D. Counterfeit Integrated Circuits: Detection and Avoidance. Springer. 269. 2015. ISBN: 978-3-319-11823-9.
- Nanoelectronics: Devices, Circuits and Systems // Editor by Brajesh Kumar Kaushik. Elsevier. 2018. 476. ISBN: 9780128133545.
- Nagy D., Espiñeira G., Indalecio G., García-Loureiro A.J., Kalna K., Seoane N. Benchmarking of FinFET, nanosheet, and nanowire FET architectures for future technology nodes // IEEE Access. 2020. V. 8. P. 53196–53202. https://doi.org/10.1109/access.2020.2980925
- Маsalsky N.V. CVC simulation of ultrathin Soi-Cmos nanotransistors with a fully enclosed gate // Russian Microelectronics. 2021. V. 50. P. 387–393. https://doi.org/10.1134/S1063739721050036
- Yoon J.S., Lee S., Yun H., Baek R.H. Digital/Analog performance optimization of vertical nanowire FETs using machine learning // IEEE Access. 2021. V. 9. P. 29071–29077. https://doi.org/10.1109/ACCESS.2021.3059475
- Lee S., Yoon J.-S., Lee J., Jeong J., Yun H., Lim J., Lee S., Baek R.-H. Novel modeling approach to analyze threshold voltage variability in short gate-length (15–22 nm) nanowire FETs with various channel diameters // Nanomaterials. 2022. V. 12. Nо. 10. Art. 1721. https://doi.org/10.3390/nano12101721
- Elmessary M.A., Nagy D., Aldegunde M., Seoane N., Indalecio G., Lindberg J., Dettmer W., Perić D., García-Loureiro A.J., Kalna K. Scaling/LER Study of Si GAA Nanowire FET using 3D Finite Element Monte Carlo Simulations // Solid-State Electronics. 2017. V. 128. P. 17–24. https://doi.org/10.1016/j.sse.2016.10.018
- Donetti L., Sampedro C., Ruiz F.G. Multi-Subband Ensemble Monte Carlo simulations of scaled GAA MOSFETs // Solid-State Electronics. 2018. V. 143. P. 49–55. https://doi.org/ 10.1109/ULIS.2017.7962567
- Waldrop M.M. The chips are down for Moore’s law // Nature. 2016. V. 530. Nо. 7589. P. 144–151. https://doi.org/10.1038/530144a
- Sung W.-L., Li Y. Statistical prediction of nano sized-metal-grain induced threshold-voltage variability for 3D vertically stacked silicon gate-all-around nanowire n-MOSFETs // J. Electron. Mater. 2020. V. 49. Nо. 11. P. 6865–6871. https://doi.org/10.1007/s11664-020-08332-2
- Kim S.D., Wada H., Woo J.C.S. TCAD-based statistical analysis and modeling of gate line-edge roughness effect on nanoscale MOS transistor performance and scaling // IEEE Trans. Semiconductor Manufacturing. 2004. V. 17. Nо. 2. P. 192–200. https://doi.org/10.1109/TSM.2004.826935
- Lee S., Yoon J.S., Jeong J., Lee J., Baek R.H. Observation of mobility and velocity behaviors in ultra-scaled LG = 15 nm silicon nanowire field-effect transistors with different channel diameters // Solid-State Electron. 2020. V. 164. Art. 107740. https://doi.org/10.1016/j.see.2019.107740
- Fernandez J.G, Seoane N., Comesaña E., García-Loureiro A. Pelgrom-based predictive model to estimate metal grain granularity and line edge roughness in advanced multigate MOSFETs // IEEE Journal of the Electron Devices Society. 2022. V. 10. P. 953–959. https://doi.org/ 10.1109/JEDS.2018.2804383
- Giannatou E., Papavieros G., Constantoudis V., Papageorgiou H., Gogolides E. Deep learning denoising of SEM images towards noise-reduced LER measurements // Microelectron. Eng., 2019. V. 216. Art. 111051. https://doi.org/10.1016/j.mee.2019.111051
- Lorusso G.F., Inoue O., Ohashi T., Sanchez E.A., Constantoudis V., Koshihara S. Line width roughness accuracy analysis during pattern transfer in self-aligned quadruple patterning process // Proc. SPIE 9778, Metrology, Inspection, and Process Control for Microlithography XXX, 97780V (18 March 2016). https://doi.org/10.1117/12.2218863
- Kumar S., Goel E., Singh K., Singh B., Kumar M., Jit S. A compact 2D analytical model for electrical characteristics of double-gate tunnel field-effect transistors with a SiO2/high-k stacked gate-oxide structure // IEEE Trans. Electron Devices. 2016. V. 63. P. 3291–3330. https://doi.org/ 10.1109/TED.2016.2572610
- Medina Bailon C., Sadi T., Nedjalkov M., Lee J., Berrada S., Carrillo-Nunez H., Georgiev V. P., Selberherr S., Asenov A. Impact of the effective mass on the mobility in Si nanowire transistors // International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Austin, TX, 24–26 Sept. 2018. P. 297–300. https://doi.org/10.1109/SISPAD.2018.8551630
- Tomar G., Barwari A. Fundamental of electronic devices and circuits. Springer, 224, 2019, ISBN: 9789811502668.
- Yu S., Won S.M., Baac H.W., Son D., Shin C. Quantitative evaluation of line-edge roughness in various FinFET structures: Bayesian neural network with automatic model selection // IEEE Access. 2022. V. 10. P. 26340–26346. https://doi.org/10.1109/ACCESS.2022.3156118
- Masal’skii N.V. Simulation of silicon field-effect conical GAA nanotransistors with a stacked SiO2/HfO2 subgate dielectric // Russian Microelectronics. 2024. V. 53. Nо. 3. P. 237–244. https://doi.org/10.1134/S1063739724600274
- Nanowires – Recent Progress. Editor by Peng X. IntechOpen, 198, 2021, ISBN: 978-1-83962-392-9.
Supplementary files
