Ferroelectric transistors: operating principles, materials, applications
- Authors: Reznyukov А.Y.1,2, Fetisenkova K.A.1,3, Rogozhin A.E.1,2,3
-
Affiliations:
- Kurchatov Institute
- Moscow Power Engineering Institute
- Moscow Institute of Physics and Technology
- Issue: Vol 54, No 2 (2025)
- Pages: 164-181
- Section: ПРИБОРЫ
- URL: https://ruspoj.com/0544-1269/article/view/687129
- DOI: https://doi.org/10.31857/S0544126925020069
- EDN: https://elibrary.ru/FUWBHY
- ID: 687129
Cite item
Abstract
Applications related to the use of artificial intelligence (AI) and the Internet of Things require high-performance computing systems. Modern digital neuromorphic coprocessors, which are manufactured using CMOS technology, are ineffective in executing neural network algorithms due to the limitations of the von Neumann architecture. A promising direction for research in this area is integrated circuits based on non-volatile ferroelectric transistors. The paper provides an overview of studies devoted to ferroelectric materials, characteristics of ferroelectric transistors and methods for their study.
Keywords
Full Text

About the authors
А. Yu. Reznyukov
Kurchatov Institute; Moscow Power Engineering Institute
Author for correspondence.
Email: RezniukovAY@mpei.ru
Russian Federation, Moscow; Moscow
K. A. Fetisenkova
Kurchatov Institute; Moscow Institute of Physics and Technology
Email: fetisenkova@ftian.ru
Russian Federation, Moscow; Moscow
A. E. Rogozhin
Kurchatov Institute; Moscow Power Engineering Institute; Moscow Institute of Physics and Technology
Email: rogozhin@ftian.ru
Russian Federation, Moscow; Moscow; Moscow
References
- Dong W. et al. Ferroelectric materials for neuroinspired computing applications, Fundamental Research, September 2024, Vol. 4, Iss. 5, P. 1272–1291.
- Yoon S.-K. et al. Design of DRAM-NAND flash hybrid main memory and Q-learning-based prefetching method, J. Supercompu., 2018, V. 74, P. 5293.
- Liao C.-Y. et al. Multipeak coercive electric-field-based multilevel cell nonvolatile memory with antiferroelectric-ferroelectric Field-Effect Transistors (FETs), IEEE Trans. Ultrason., Ferroelectr., Freq. Control, 2022, V. 69, P. 2214–2221.
- Sugibuchi K., Kurogi Y., Endo N. Ferroelectric field-effect memory device using Bi4Ti3O12 film, J. Appl. Phys., 1975, V. 46, P. 2877–2881.
- Chauhan N. et al. Negative to-Positive Differential Resistance Transition in Ferroelectric FET: Physical Insight and Utilization in Analog Circuits, IEEE Trans. Ultrason., Ferroelectr. Freq. Control, 2022, V. 69, P. 430–437.
- Katsouras I. et al. Controlling the on/off current ratio of ferroelectric field- effect transistors, Sci. Rep. 5, 2015, P. 12094.
- Scott J.F. Ferroelectric Memories, Springer, 2000, Vol. 3.
- Орлов О.М., Маркеев А.М., Зенкевич А.В., Черникова А.Г., Спиридонов М.В., Измайлов Р.А., Горнев Е.С. Исследование характеристик и особенностей изготовления элементов энергонезависимой памяти fram, полученных с использованием процессов атомно-слоевого осаждения, Микроэлектроника, 2016, том 45, № 4, с. 280–288.
- Böscke T. et al. Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors, IEEE, 2011, In 2011 Int. Electron Devices Meeting 24.5.1–24.5.4.
- Böscke T. et al. Phase transitions in ferroelectric silicon doped hafnium oxide, Appl. Phys. Lett., 2011, V. 99, P. 112904.
- Keshavarzi A., van den Hoek W. Edge intelligence – on the challenging road to a trillion smart connected iot devices, IEEE Des. Test, 2019, V. 36, P. 41–64.
- Mushkolaj S. The origin of the spontaneous electric polarization, arXiv:0810.4088, 2008, P. 1.
- Said S.M., Sabri M.F.M., Salleh F. Ferroelectrics and Their Applications, Reference Module in Materials Science and Materials Engineering, 2017.
- Bush A. Pyroelectric effect and its applications, Moscow, MIREA, January 2005, P. 18.
- Si M. et al. A ferroelectric semiconductor field-effect transistor, Nat. Electron., 2019, V. 2, P. 580.
- Mulaosmanovic H. et al. Mimicking biological neurons with a nanoscale ferroelectric transistor, Nanoscale, 2018, V. 10, P. 21755–21763.
- Kimand K., Lee S. Integration of lead zirconium titanate thin films for high density ferroelectric random access memory, J. Appl. Phys., 2006, V. 100, 051604.
- Liu X., Liu Y., Chen W., Li J., Liao L. Ferroelectric memory based on nanostructures, Nanoscale Res. Lett., 2012, V. 7, P. 285.
- Yurchuk E. et al. Charge-trapping phenomena in HfO2-based FeFET-type nonvolatile memories, IEEE Trans. Electron Devices, 2016, V. 63, P. 3501.
- Shiraneand G., Suzuki K. Crystal structure of Pb(Zr-Ti)O3, J. Phys. Soc. Jpn., 1952, V. 7, P. 333.
- Haertling G.H. Ferroelectric ceramics: History and technology, Ferroelectricity, 2007, 818, P. 157.
- Newnham R.E. Molecular mechanisms in smart materials, MRS Bull., 1997, Vol. 22, P. 20.
- Ko C. et al. Ferroelectrically gated atomically thin transition-metal dichalcogenides as nonvolatile memory, Adv. Mater., 2016, V. 28, P. 2923.
- Lee B.W. Synthesis and characterization of compositionally modified PZT by wet chemical preparation from aqueous solution, J. Eur. Ceram. Soc., 2004, V. 24, P. 925.
- Qi H., Xia X., Zhou C., Xiao P., Wang Y., Deng Y. Ferroelectric properties of the flexible Pb(Zr0.52Ti0.48)O3 thin film on mica, J. Mater. Sci. Mater. Electron., 2020, V. 31, P. 3042.
- Schroeder R., Majewski L.A., Grell M. All-organic permanent memory transistor using an amorphous, spin-cast ferroelectric-like gate insulator, Adv. Mater., 2004, V. 16, P. 633.
- Li H., Wang R., Han S.T., Zhou Y. Ferroelectric polymers for non-volatile memory devices: A review, Polym. Int., 2020, V. 69, P. 533.
- Furukawa T. Ferroelectric properties of vinylidene fluoride copolymers, Phase Transitions, 1989, V. 18, P. 143.
- Hasegawa R., Takahashi Y., Chatani Y., Tadokoro H. Crystal structures of three crystalline forms of poly(vinylidene fluoride), Polym. J., 1972, V. 3, P. 600.
- García-Gutiérrez M.-C. et al. Understanding crystallization features of P(VDF-TrFE) copolymers under confinement to optimize ferroelectricity in nanostructures, Nanoscale, 2013, V. 5, P. 6006.
- Tsai M.-F. et al. Oxide heteroepitaxy-based flexible ferroelectric transistor, ACS Appl. Mater. Interfaces, 2019, V. 11, P. 25882.
- Fischerand D., Kersch A. The effect of dopants on the dielectric constant of HfO2 and ZrO2 from first principles, Appl. Phys. Lett., 2008, V. 92, 012908.
- Lun X. et al. Kinetic pathway of the ferroelectric phase formation in doped HfO2 films, Journal of applied physics, 2017, № 122, 124104.
- Schroeder U. et al. Impact of different dopants on the switching properties of ferroelectric hafniumoxide, Japanese Journal of Applied Physics, 2014, V. 53, 08LE02.
- Böscke T.S., Müller J., Bräuhaus D., Schröder U., Böttger U. Ferroelectricity in hafnium oxide thin films, Appl. Phys. Lett., 2011, V. 99, 102903.
- Zarubin S. et al. Fully ALD-grown TiN/Hf0.5Zr0.5O2/TiN stacks: Ferroelectric and structural properties, Appl. Phys. Lett., 2016, V. 109, 192903.
- Kim S.J. et al. Large ferroelectric polarization of TiN/Hf0.5Zr0.5O2/TiN capacitors due to stress-induced crystallization at low thermal budget, Appl. Phys. Lett., 2017, V. 111, 242901.
- Kozodaev M.G. et al. La-doped Hf0.5Zr0.5O2 thin films for high-efficiency electrostatic supercapacitors, Applied physics letters, 2018, V. 113, 123902.
- Kozodaev M.G. et al. Mitigating wakeup effect and improving endurance of ferroelectric HfO2-ZrO2 thin films by careful La-doping, J. Appl. Phys., 2019, V. 125, 034101.
- Kim H.J. et al. Grain size engineering for ferroelectric Hf0.5Zr0.5O2 films by an insertion of Al2O3 interlayer, Appl. Phys. Lett., 2014, V. 105, 192903.
- Zhang S. et al. Low voltage operating 2D MoS2 ferroelectric memory transistor with Hf1−xZrxO2 gate structure, Nanoscale Res. Lett., 2020, V. 15, P. 157.
- Mikolajick T., Slesazeck S., Park M.H., Schroeder U. Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric fieldeffect transistors, MRS Bull., 2018, V. 43, P. 340.
- Zhou Y. et al. Out-of-Plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes, Nano Lett., 2017, V. 17, P. 5508.
- Majdoub M.S., Maranganti R., Sharma P. Understanding the origins of the intrinsic dead-layer effect in nanocapacitors, Physical review B, 2009, V. 79, 115412.
- Фетисенкова K.A., Рогожин A.E. Нейроморфные системы: приборы, архитектура и алгоритмы, Микроэлектроника, 2023, том 52, № 5, с. 404–422.
- Oh S., Hwang H., Yoo I.K. Ferroelectric materials for neuromorphic computing, APL Materials, 2019, V. 7(9), 091109.
- Jerry M. et al. Ferroelectric FET analog synapse for acceleration of deep neural network training, IEEE International Electron Devices Meeting (IEDM), 2017.
- George S. et al. Nonvolatile memory design based on ferroelectric FETs, Proceedings of the 53rd Annual Design Automation Conference on – DAC ’16, 2016.
- Salahuddin S., Datta S. Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices, Nano Letters, 2008, V. 8(2), P. 405–410.
- Yu E. et al. Ferroelectric FET Based Coupled-Oscillatory Network for Edge Detection, IEEE Electron Device Lett., 2021, V. 42, P. 1670–1673.
- Ajayan J. et al. Ferroelectric Field Effect Transistors (FeFETs): Advancements, challenges and exciting prospects for next generation Non-Volatile Memory (NVM) applications, Materials Today Communications, 2023, V. 35, 105591.
- Jiao H., Wang X., Wu S. et al. Ferroelectric field effect transistors for electronics and optoelectronics, Appl. Phys. Rev., 2023, V. 10, 011310.
- Tang M. et al. Impact of HfTaO Buffer Layer on Data Retention Characteristics of Ferroelectric-Gate FET for Nonvolatile Memory Applications, IEEE Trans. Electron Devices, 2011, V. 58, P. 370–375.
- Liu H. et al. ZrO2 Ferroelectric FET for Non-volatile Memory Application, IEEE Electron Device Lett., 2019, V. 40, P. 1419–1422.
- Noh J. et al. First Experimental Demonstration of Robust HZO/β-Ga2O3 Ferroelectric Field-Effect Transistors as Synaptic Devices for Artificial Intelligence Applications in a High-Temperature Environment, IEEE Trans. Electron Devices, 2021, V. 68, P. 2515–2521.
- Schroeder R., Majewski L., Grell M. All-Organic Permanent Memory Transistor Using an Amorphous, Spin-Cast Ferroelectric-like Gate Insulator, Adv. Mater., 2004, V. 16, P. 633–636.
- Hoffmann M. et al. Fast read-after-write and depolarization fields in high endurance n-type ferroelectric FETs, IEEE Electron Device Lett., 2022, V. 43, P. 717–720.
- Shu-Yau W. A new ferroelectric memory device, metal-ferroelectric semiconductor transistor, IEEE Trans. Electron Devices, 1974, V. 21, P. 499–504.
- Yurchuk E. et al. Impact of Scaling on the Performance of HfO2-Based Ferroelectric Field Effect Transistors, IEEE Trans. Electron Devices, 2014, V. 61, P. 3699–3706.
- Luo J.-D. et al. Atomic Layer Deposition Plasma-Based Undoped-HfO2 Ferroelectric FETs for Non-Volatile Memory, IEEE Electron Device Lett., 2021, V. 42, P. 1152–1155.
- Xu M. et al. High Mobility Flexible Ferroelectric Organic Transistor Nonvolatile Memory With an Ultrathin AlOX Interfacial Layer, IEEE Trans. Electron Devices, 2018, V. 65, P. 1113–1118.
- Yan S.-C. et al. High Speed and Large Memory Window Ferroelectric HfZrO2 FinFET for High-Density Nonvolatile Memory, IEEE Electron Device Lett., 2021, V. 42, P. 1307–1310.
- Liu B. et al. Excellent ferroelectric Hf0.5Zr0.5O2 thin films with ultra-thin Al2O3 serving as capping layer, Applied Physics Letters, 2021, V. 119, №. 17.
- Goh Y. et al. Ultra-thin Hf0.5Zr0.5O2 thin-film-based ferroelectric tunnel junction via stress induced crystallization, Applied Physics Letters, 2020, V. 117, № 24.
- Мяконьких A.B., Смирнова Е.А., Клементе И.Э. Применение метода спектральной эллипсометрии для исследования процессов атомно-слоевого осаждения Микроэлектроника, 2021, том 50, № 4, с. 264–273.
- Hamouda W. et al. Physical chemistry of the TiN/Hf0.5Zr0.5O2 interface Journal of Applied Physics, 2020, V. 127, № 6.
- Chouprik A. et al. Wake-up free ultrathin ferroelectric Hf0.5Zr0.5O2 films Nanomaterials, 2023, V. 13, № 21, P. 2825.
- Park M.H. et al. Study on the size effect in Hf0.5Zr0.5O2 films thinner than 8 nm before and after wake-up field cycling Appl. Phys. Lett., 2015, V. 107(19), 192907.
- Schenk T. et al. On the origin of the large remanent polarization in La:HfO2 Adv. Electron. Mater, 2019, V. 5(12), 1900303.
- Hamouda W. et al. Oxygen vacancy concentration as a function of cycling and polarization state in TiN/Hf0.5Zr0.5O2/TiN ferroelectric capacitors studied by x-ray photoemission electron microscopy Applied Physics Letters, 2022, V. 120, № 20.
- Goh Y. et al. Oxygen vacancy control as a strategy to achieve highly reliable hafnia ferroelectrics using oxide electrode, Nanoscale, 2020, V. 12, № 16, P. 9024–9031.
- Giannazzo F. et al. Conductive AFM of 2D Materials and Heterostructures for Nanoelectronics, Electrical Atomic Force Microscopy for Nanoelectronics, 2019.
- Chouprik A. et al. Ferroelectricity in Hf0.5Zr0.5O2 thin films: A microscopic study of the polarization switching phenomenon and field-induced phase transformations, ACS applied materials & interfaces, 2018, V. 10, № 10, P. 8818–8826.
- Martin S. et al. A new technique based on current measurement for nanoscale ferroelectricity assessment: Nano-positive up negative down, Review of Scientific Instruments, 2017, V. 88, № 2.
- Florent K. Ferroelectric HfO2 for emerging ferroelectric semiconductor devices, Rochester Institute of Technology, 2015.
- Stauffer L. Fundamentals of semiconductor c-v measurements, Keithley, 2009.
- Schenk T. et al. Complex internal bias fields in ferroelectric hafnium oxide, ACS applied materials & interfaces, 2015, V. 7, № 36, P. 20224–20233.
- Genenko Y.A. et al. Mechanisms of aging and fatigue in ferroelectrics, Materials Science and Engineering: B, 2015, V. 192, P. 52–82.
- Jiang P. et al. Wake‐up effect in HfO2‐based ferroelectric films, Advanced Electronic Materials, 2021, V. 7, № 1, P. 2000728.
- Zhou Y. et al. Mechanisms of imprint effect on ferroelectric thin films, Journal of applied physics, 2005, V. 98, № 2.
- Schenk T. et al. About the deformation of ferroelectric hystereses, Applied physics reviews, 2014, V. 1, № 4.
- Park J.Y. et al. A perspective on semiconductor devices based on fluorite-structured ferroelectrics from the materials–device integration perspective, Journal of Applied Physics, 2020, P. 128, № 24.
- Shao X. et al. Investigation of Endurance Degradation Mechanism of Si FeFET With HfZrO Ferroelectric by an In Situ V th Measurement, IEEE Transactions on Electron Devices, 2023, P. 70, № 6, P. 3043–3050.
- Tarek A. et al. A FeFET with a novel MFMFIS gate stack: towards energy-efficient and ultrafast NVMs for neuromorphic computing, Nanotechnology, 2021, V. 32, 425201.
- Gong N., Ma T.-P. A Study of Endurance Issues in HfO2-Based Ferroelectric Field Effect Transistors: Charge Trapping and Trap Generation, IEEE Electron Device Letters, 2018, V. 39(1), P. 15–18.
- Shujing Z. et al. Experimental Extraction and Simulation of Charge Trapping during Endurance of FeFET with TiN/HfZrO/SiO2/Si (MFIS) Gate Structure, IEEE Transactions on Electron Devices, 2022, V. 69, Issue 3.
- Zeng B. et al. Program/Erase Cycling Degradation Mechanism of HfO2-Based FeFET Memory Devices, IEEE Electron Device Lett., 2019, V. 40, P. 710–713.
- Mulaosmanovic H. et al. Ferroelectric FETs With 20-nm-Thick HfO2 Layer for Large Memory Window and High Performance, IEEE Trans. Electron Devices, 2019, V. 66, P. 3828–3833.
- Ali T. et al. A Study on the Temperature-Dependent Operation of FluoriteStructure- Based Ferroelectric HfO2 Memory FeFET: Pyroelectricity and Reliability, IEEE Trans. Electron Devices, 2020, V. 67, P. 2981–2987.
- Chen K.-Y., Tsai Y.-S., Wu Y.-H. Ionizing Radiation Effect on Memory Characteristics for HfO2-Based Ferroelectric Field-Effect Transistors, IEEE Electron Device Lett., 2019, V. 40, P. 1370–1373.
- Higashi Y. et al. Impact of Charge Trapping and Depolarization on Data Retention Using Simultaneous P–V and I–V in HfO2-Based Ferroelectric FET, IEEE Trans. Electron Devices, 2021, V. 68, P. 4391–4396.
- Liu C. et al. Hf0.5Zr0.5O2-Based Ferroelectric Field-Effect Transistors With HfO2 Seed Layers for Radiation-Hard Nonvolatile Memory Applications, IEEE Trans. Electron Devices, 2021, V. 68, P. 4368.
- Liu Y. et al. Investigation of the Impact of Externally Applied Out-of-Plane Stress on Ferroelectric FET, IEEE Electron Device Lett., 2021, V. 42, P. 264–267.
- Ren C. et al. Highly robust flexible ferroelectric field effect transistors operable at high temperature with low-power consumption, Adv. Funct. Mater., 2020, V. 30, 1906131.
- Maand T.P., Gong N. Retention and endurance of FeFET memory cells, IEEE, 2019, in 2019 IEEE 11th International Memory Workshop IMW, Vol. 2019, P.1.
- Mikolajick T. et al. Hafnium oxide based ferroelectric devices for memories and beyond, IEEE, 2018, in 2018 International Symposium on VLSI Technology, Systems and Application, Vol. 1.
- Lee Y.R., Trung T.Q., Hwang B.-U., Lee N.-E. A flexible artificial intrinsic-synaptic tactile sensory organ, Nat. Commun, 2020, V. 11, P. 2753.
- Chen X., Han X., Shen Q.-D. PVDF-based ferroelectric polymers in modern flexible Electronics, Adv. Electron. Mater, 2017, V. 3, 1600460.
- Chen L. et al. A van der Waals synaptic transistor based on ferroelectric Hf0.5Zr0.5O2 and 2D tungsten disulfide, Adv. Electron. Mater., 2020, V. 6, 2000057.
- Osadaand M., Sasaki T. The rise of 2D dielectrics/ferroelectrics, APL Mater., 2019, V. 7, 120902.
- Rodriguez J.R. et al. Electric field induced metallic behavior in thin crystals of ferroelectric α-In2Se3, Appl. Phys. Lett., 2020, V. 117, 052901.
- Li Y., Gong M., Zeng H. Atomically thin α-In2Se3: An emergent twodimensional room temperature ferroelectric semiconductor, J. Semicond, 2019, V. 40, 061002.
Supplementary files
