Physicochemical and catalytic properties of homogeneous isoforms of γ-hydroxybutyrate dehydrogenase from maize (Zea mays L.)
- Authors: Anokhina G.B.1, Plotnikova E.V.1, Eprintrsev A.T.1
-
Affiliations:
- Voronezh State University
- Issue: Vol 61, No 3 (2025)
- Pages: 249-259
- Section: Articles
- URL: https://ruspoj.com/0555-1099/article/view/689276
- DOI: https://doi.org/10.31857/S0555109925030038
- EDN: https://elibrary.ru/FNLUFH
- ID: 689276
Cite item
Abstract
γ-Hydroxybutyrate dehydrogenase (GBDH) is an enzyme belonging to the oxidoreductase class, catalyzing the reversible conversion of succinic semialdehyde (SSA) to γ-hydroxybutyric acid (GHB). It has been established that in maize seedlings, GBDH has mitochondrial (73.7%) and cytoplasmic localization (26.3%). Two homogeneous preparations of GBDH isoforms were obtained from 7-day-old maize seedlings. The purified GBDH1 preparation had a native molecular mass of 60.3 kDa (Mr of individual subunits ~15 kDa). GBDH2, a heteromer with a molecular mass of ~286 kDa, consisted of subunits with Mr ranging from 52 to 66 kDa. The optimal pH values for the obtained enzymes differed: for GBDH1, the optimum pH for the oxidation reaction of γ-hydroxybutyrate was 9.0, while for GBDH2, the optimum pH was 7.0. The kinetics of the enzymatic reaction of GHB conversion to succinic semialdehyde follows the Michaelis-Menten equation. The Km value for GBDH1 with γ-hydroxybutyric acid was 0.31 ± 0.01 mM, and for NAD+ it was 0.47 mM ±0.02. For GBDH2, the Km value with the substrate GHB was 0.7 ± 0.03 mM, and the Km for NAD+ was 0.19 ± 0.01 mM. It was shown that CaCl2 and KCl increased the activity of GBDH1, while MgCl2 had a minor inhibitory effect. The catalytic activity of GBDH2 increased in the presence of CaCl2, KCl, and MgCl2. The study has both fundamental significance, expanding knowledge about the properties of GBDH and its role in plant cell metabolism, and applied significance — data on the mechanisms of regulation of GBDH work can be used to develop methods for increasing the productivity and resistance of plants to unfavorable environmental factors.
Full Text

About the authors
G. B. Anokhina
Voronezh State University
Email: bc366@bio.vsu.ru
Russian Federation, Voronezh, 394006
E. V. Plotnikova
Voronezh State University
Email: bc366@bio.vsu.ru
Russian Federation, Voronezh, 394006
A. T. Eprintrsev
Voronezh State University
Author for correspondence.
Email: bc366@bio.vsu.ru
Russian Federation, Voronezh, 394006
References
- Breitkreuz K.E., Allan W.L., Van Cauwenberghe O.R., Jakobs C., Talibi D., Andre B., Shelp B.J. //J. Biol. Chem. 2003. V. 278. № 42. P. 41552−41556. https://doi.org/10.1074/jbc.M305717200
- Eprintsev A.T., Anokhina G.B., Selivanova P.S., Moskvina P.P., Igamberdiev A.U. // Plants. 2024. V.13. № 18. P. 2651. https://doi.org/10.3390/plants13182651
- Busch K. B., Fromm H. // Plant Physiol. 1999. V. 121. № 2. P. 589−598. https://doi.org/10.1104/pp.121.2.589
- Weber H., Chételat A., Reymond P., Farmer E.E. // Plant J. 2004. V. 37. № 6. P. 877−888. https://doi.org/10.1111/j.1365-313X.2003.02013.x
- Ji J., Yue J., Xie T., Chen W., Du C., Chang E. et al. // Planta. 2018. V. 248. P. 675−690. https://doi.org/10.1007/s00425-018-2915-9
- Andriamampandry C., Siffert J.C., Schmitt M., Garnier J.M., Staub A., Muller C. et al. // Biochem. J. 1998. V. 334. № 1. P. 43−50. https://doi.org/doi: 10.1042/bj3340043
- Schaller, M., Schaffhauser, M., Sans, N. and Wermuth, B. // Eur. J. Biochem. 1999. V. 265. № 3. P. 1056−1060. https://doi.org/10.1046/j.1432-1327.1999.00826.x
- Hoover G.J., Prentice G.A., Merrill A.R., Shelp B.J. // Botany. 2007. V. 85. № 9. P. 896−902. https://doi.org/10.1139/B07-082
- Simpson J.P., Di Leo R., Dhanoa P.K., Allan W.L., Makhmoudova A., Clark S.M., et al. // J. Exp. Bot 2008. V. 59. № 9. P. 2545−2554. https://doi.org/10.1093/jxb/ern123
- Allan W.L., Simpson J.P., Clark S.M., Shelp B.J. // J. Exp. Bot. 2008. V. 59. № 9. P. 2555−2564. https://doi.org/10.1093/jxb/ern122
- Allan L.W., Peiris C., Bown A.W., Shelp B.J. // Canadian Journal of Plant Science. 2003. V. 83. № 4. P. 951−953. https://doi.org/10.4141/P03-085
- Fait A., Yellin A., Fromm H. // Communication in Plants: Neuronal Aspects of Plant Life. 2006. P. 171−185. https://doi.org/10.1007/978-3-540-28516-8_12
- Tay E., Lo W. K. W., Murnion B. // Subst. Abuse Rehabil. 2022. V. 13. P. 13−23. https://doi.org/10.2147/SAR.S315720
- Trainer M.A., Charles T.C. // Appl. Microbiol. Biotechnol. 2006. V. 71. № 4. P. 377−386. https://doi.org/10.1007/s00253-006-0354-1
- Плотникова Е.В., Анохина Г.Б., Епринцев А.Т., Вандышев Д.Ю. // Вестник Воронежского государственного университета Серия: Химия. Биология. Фармация. 2023. № 3 С. 25−30.
- Kaufman E.E., Nelson T. // Neurochem. Res. 1991. V. 16. P. 965−974. https://doi.org/10.1007/BF00965839
- Taxon E.S., Halbers L.P., Parsons S.M. // BBA-Proteins and Proteomics. 2020. V. 1868. № 5. P. 140376. https://doi.org/10.1016/j.bbapap.2020.140376
- Остерман Л.А. Методы исследования белков и нуклеиновых кислот: Электрофорез и ультрацентрифугирование, М.: Наука, 1981. 288 с.
- Pathuri I.P., Reitberger I.E., Hückelhoven R., Proels R.K. // J. Exp. Bot. 2011. V. 10. P. 3449–3457. https://doi.org/10.1093/jxb/err017
- Попов В.Н., Епринцев А.Т., Федорин Д.Н. // Физиология растений. 2007. Т. 54. № 3. С. 409‒415.
- Епринцев А.Т., Федорин Д.Н., Селиванова Н.В., Ву Т.Л., Махмуд А.С., Попов В.Н. // Физиология растений. 2012. Т. 59. № 3. С. 332–340.
- Jelski W., Laniewska-Dunaj M., Orywal K., Kochanowicz J., Rutkowski R., Szmitkowski M. // Neurochem Res. 2014. V. 39. P. 2313–2318.
- Детерман Г. Гель-хроматография. М.: Мир, 1970. C. 252.
- Tulchin N., Ornstein L., Davis B.J. // Anal. Biochem. 1976. V. 72. № 1−2. P. 485−490. https://doi.org/10.1016/0003-2697(76)90558-3
- Молекулярно-генетические и биохимические методы в современной биологии растений / Под.ред. Вл.В. Кузнецова, В.В. Кузнецова, Г.А. Романова. Эл. Издание. М.: БИНОМ. Лаборатория знаний, 2012. С. 487
- Маурер Г. Диск-электрофорез: Теория и практика электрофореза в полиакриламидном геле. Пер. с нем. М.: Мир, 1971. С. 248.
- Гааль Э., Медьеши Г., Верецкеи Л. Электрофорез в разделении биологических макромолекул. М.: Мир, 1982. C. 446.
- Laemmly U.K. // Nature. 1970. V. 77. № 4. P. 680−683. https://doi.org/10.1038/227680a0
- Shevchenko A., Wilm M., Vorm O., Mann M. // Anal. Chem. 1996. V. 68. № 5. P. 850−858. https://doi.org/10.1021/ac950914h
- Zarei A., Brikis C.J., Bajwa V.S., Chiu G.Z., Simpson J.P. et al. // Frontiers in Plant Science. 2017. V. 8. P. 1399. https://doi.org/10.3389/fpls.2017.01399
- Bouché N., Fait A., Bouchez D., Moller S.G., Fromm H. // PNAS. 2003. V. 100. № 11. P. 6843−6848. https://doi.org/10.1073/pnas.1037532100
- Shelp B.J., Allan W.L., Faure D. //Plant-Environment Interactions From Sensory Plant Biology to Active Plant Behavior. / Ed. F. Baluska. Springer, 2009. P. 73−84. https://doi.org/10.1007/978-3-540-89230-4_4
- Bravo D.T., Harris D.O., Parsons S.M. // Journal of Forensic Sciences. 2004. V. 49. № 2. P. 379−387.
Supplementary files
