Indication of heat shock proteins in conducting suspensions using phage antibodies and an acoustic analyzer
- 作者: Guliy O.I.1, Zaitsev B.D.2, Borodina I.A.2, Staroverov S.A.1, Vyrshchikov R.D.1, Fursova K.K.3, Brovko F.A.3, Dykman L.A.1
-
隶属关系:
- Institute of Biochemistry and Physiology of Plants and Microorganisms — Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov Branch
- Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry
- 期: 卷 61, 编号 3 (2025)
- 页面: 294-302
- 栏目: Articles
- URL: https://ruspoj.com/0555-1099/article/view/689354
- DOI: https://doi.org/10.31857/S0555109925030074
- EDN: https://elibrary.ru/DRUPXS
- ID: 689354
如何引用文章
详细
There are numerous publications indicating an increase in the expression level of heat shock proteins (HSP) in oncological diseases. Therefore, the development of methods for indicating HSP as a marker of oncological diseases is promising. In this work, phage antibodies specific to HSP of a mouse myeloma cell line were obtained. For the first time, using a compact acoustic sensor, the effect of the conductivity of the measurement medium on the registration of an analytical signal during the interaction of phage antibodies with HSP was studied. The possibility of registering a specific interaction “HSP-phage antibodies” in suspensions with a conductivity of 50-1180 μS/cm was experimentally established. Control experiments were conducted to assess of mass load on the sensor. The results obtained are promising for the development of acoustic sensor systems in the HSP indication.
全文:

作者简介
O. Guliy
Institute of Biochemistry and Physiology of Plants and Microorganisms — Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)
编辑信件的主要联系方式.
Email: guliy_olga@mail.ru
俄罗斯联邦, Saratov, 410049
B. Zaitsev
Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov Branch
Email: guliy_olga@mail.ru
俄罗斯联邦, Saratov, 410019
I. Borodina
Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov Branch
Email: guliy_olga@mail.ru
俄罗斯联邦, Saratov, 410019
S. Staroverov
Institute of Biochemistry and Physiology of Plants and Microorganisms — Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)
Email: guliy_olga@mail.ru
俄罗斯联邦, Saratov, 410049
R. Vyrshchikov
Institute of Biochemistry and Physiology of Plants and Microorganisms — Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)
Email: guliy_olga@mail.ru
俄罗斯联邦, Saratov, 410049
K. Fursova
Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry
Email: guliy_olga@mail.ru
俄罗斯联邦, Pushchino, 142290
F. Brovko
Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry
Email: guliy_olga@mail.ru
俄罗斯联邦, Pushchino, 142290
L. Dykman
Institute of Biochemistry and Physiology of Plants and Microorganisms — Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)
Email: guliy_olga@mail.ru
俄罗斯联邦, Saratov, 410049
参考
- Poghossian A., Schoning M.J. // Electroanalysis 2014. V. 26. P. 1197–1213. https://doi.org/10.1002/elan.201400073
- Marvi F., Jafari K. // IEEE Trans. Instrum. Meas. 2021. V. 70. P. 7501. https://doi.org/10.1109/TIM.2021.3052001
- Durmuşa N.G., Lin R.L., Kozbergc M., Dermici D., Khademhosseini A., Demirci U. // Encyclopedia of Microfluidics and Nanofluidics. Living Reference Work. / Ed. D. Li. New York: Springer Science+Business Media, 2014. https://doi.org/10.1007/978-3-642-27758-0_10-2
- Lange K., Rapp B.E., Rapp M. // Anal. Bioanal. Chem. 2008. V. 391. P. 1509–1519. https://doi.org/10.1007/s00216-008-1911-5
- Guliy O.I., Zaitsev B.D., Borodina I.A. // Nanobioanalytical Approaches to Medical Diagnostics. / Eds P.K. Maurya, P. Chandra. Elsevier Ltd. Woodhead Publishing, 2022. Chapter 5. pp. 143–177. https://doi.org/10.1016/B978-0-323-85147-3.00004-9
- Guliy O.I., Zaitsev B.D., Borodina I.A. // Sensors. 2023. V. 23. P. 6292. https://doi.org/10.3390/s23146292
- Rocha-Gaso M.I., March-Iborra C., Montoya-Baides A., Arnau-Vives A. // Sensors. 2009. V. 9. P. 5740–5769. https://doi.org/10.3390/s90705740
- Lee J., Choi Y.-S., Lee Y., Lee H.J., Lee J.N., Kim S.K. et al. // Anal. Chem. 2011. V. 83. P. 8629–8635. https://doi.org/10.1021/ac2020849
- Han S.B., Lee S.S. // Micromachines 2024. V. 15. P. 249. https://doi.org/10.3390/mi15020249
- Zhang J., Zhang X., Wei X., Xue Y., Wan H., Wang P. // Anal. Chim. Acta. 2021. V. 1164. P. 338321. https://doi.org/10.1016/j.aca.2021.338321
- Mascini M., Del Carlo M., Compagnone D., Cozzani I., Tiscar P.G., Mpamhanga C.P. et al. // Anal. Lett. 2006. V. 39. № 8. P. 1627–1642. https://doi.org/10.1080/00032710600713529
- Luengwilai K., Beckles D.M., Saltveit M.E. // Postharvest Biol. Technol. 2012. V. 63. № 1. P. 123–128. https://doi.org/10.1016/j.postharvbio.2011.06.017
- Polenta G.A., Guidi S.M., Ambrosi V., Denoya G.I. // Curr. Res. Food Sci. 2020. V. 3. P. 329–338. https://doi.org/10.1016/j.crfs.2020.09.002
- Kampinga H.H., Hageman J., Vos M.J., Kubota H., Tanguay R.M., Bruford E.A. et al. // Cell Stress Chaperones. 2009. V. 14. № 1. P. 105–111. https://doi.org/10.1007/s12192-008-0068-7
- Maksimovich N.Y., Bon L.I. // J. Biomed. 2020. V. 16. № 2. P. 60–67. https://doi.org/10.33647/2074-5982-16-2-60-67
- Shevtsov M., Balogi Z., Khachatryan W., Gao H., Vígh L., Multho G. // Cells. 2020. V. 9. P. 1263. https://doi.org/10.3390/cells9051263
- Rokutan K. // J. Gastroenterol. Hepatol. 2000. 15(Suppl):D. P. 12–19. https://doi.org/10.1046/j.1440-1746.2000.02144.x
- Waters E.R. // J. Exp. Bot. 2013. V. 64. № 2. P. 391–403. https://doi.org/10.1093/jxb/ers355
- Guliy O.I., Staroverov S.A., and Dykman L.A. // Appl. Biochem. Microbiol. 2023. V. 59. № 4. P. 395–407. https://doi.org/10.1134/S0003683823040063
- Bayer C., Liebhardt M.E., Schmid T.E., Trajkovic-Arsic M., HubeK., Specht H.M. et al. // Int. J. Radiat. Oncol. Biol. Phys. 2014. V. 88. № 3. P. 694–700. https://doi.org/10.1016/j.ijrobp.2013.11.008
- Qu B., Jia Y., Liu Y., Wang H., Ren G., Wang H. // Cell Stress and Chaperones. 2015. V. 20. P. 885–892. https://doi.org/10.1007/s12192-015-0618-8
- Komarova E.Y., Suezov R.V., Nikotina A.D., Aksenov N.D., Garaeva L.A., Shtam T.A. et al. // Sci. Rep. 2021. V. 11. P. 21314. https://doi.org/10.1038/s41598-021-00734-4
- Staroverov S.A., Kozlov S.V., Brovko F.A., Fursova K.K., Shardin V.V., Fomin A.S. et al. // Biosens. Bioelectron.: X. 2022. V. 11. P. 100211. https://doi.org/10.1016/j.biosx.2022.100211
- Dykman L.A., Staroverov S.A., Vyrshchikov R.D., Fursova K.K., Brovko F.A., Soldatov D.A., Guliy O.I. // Appl. Biochem.d Microbiol. 2023. V. 59. № 4. P. 539–545. https://doi.org/10.1134/S0003683823040051
- Guliy O.I., Khanadeev V.A., Dykman L.A. // Front. Biosci. (Elite Ed.) 2024. V. 16. №. 3. P. 24. https://doi.org/10.31083/j.fbe1603024
- Petrenko V.A. // Viruses 2024. V. 16. P. 968. https://doi.org/10.3390/v16060968
- Guliy O.I., Zaitsev B.D., Borodina I.A., Staroverov S.A., Vyrshchikov R.D., Fursova K.K. et al. // Microchem. J. 2024. V. 207. 111661. https://doi.org/10.1016/j.microc.2024.111661
- Ulitin A.B., Kapralova M.V., Laman A.G., Shepelyakovskaya A.O., Bulgakova E.V., Fursova K.K. et al. // Dokl. Biochem. Biophys. 2005. V. 405. P. 437–440. https://doi.org/10.1007/s10628-005-0134-3
- Calderwood S.K., Khaleque M.A., Sawyer D.B., Ciocca D.R. // Trends Biochem. Sci. 2006. V. 31. P. 164–172. https://doi: 10.1016/j.tibs.2006.01.006
补充文件
