Indication of heat shock proteins in conducting suspensions using phage antibodies and an acoustic analyzer

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

There are numerous publications indicating an increase in the expression level of heat shock proteins (HSP) in oncological diseases. Therefore, the development of methods for indicating HSP as a marker of oncological diseases is promising. In this work, phage antibodies specific to HSP of a mouse myeloma cell line were obtained. For the first time, using a compact acoustic sensor, the effect of the conductivity of the measurement medium on the registration of an analytical signal during the interaction of phage antibodies with HSP was studied. The possibility of registering a specific interaction “HSP-phage antibodies” in suspensions with a conductivity of 50-1180 μS/cm was experimentally established. Control experiments were conducted to assess of mass load on the sensor. The results obtained are promising for the development of acoustic sensor systems in the HSP indication.

Texto integral

Acesso é fechado

Sobre autores

O. Guliy

Institute of Biochemistry and Physiology of Plants and Microorganisms — Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)

Autor responsável pela correspondência
Email: guliy_olga@mail.ru
Rússia, Saratov, 410049

B. Zaitsev

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov Branch

Email: guliy_olga@mail.ru
Rússia, Saratov, 410019

I. Borodina

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov Branch

Email: guliy_olga@mail.ru
Rússia, Saratov, 410019

S. Staroverov

Institute of Biochemistry and Physiology of Plants and Microorganisms — Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)

Email: guliy_olga@mail.ru
Rússia, Saratov, 410049

R. Vyrshchikov

Institute of Biochemistry and Physiology of Plants and Microorganisms — Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)

Email: guliy_olga@mail.ru
Rússia, Saratov, 410049

K. Fursova

Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry

Email: guliy_olga@mail.ru
Rússia, Pushchino, 142290

F. Brovko

Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry

Email: guliy_olga@mail.ru
Rússia, Pushchino, 142290

L. Dykman

Institute of Biochemistry and Physiology of Plants and Microorganisms — Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)

Email: guliy_olga@mail.ru
Rússia, Saratov, 410049

Bibliografia

  1. Poghossian A., Schoning M.J. // Electroanalysis 2014. V. 26. P. 1197–1213. https://doi.org/10.1002/elan.201400073
  2. Marvi F., Jafari K. // IEEE Trans. Instrum. Meas. 2021. V. 70. P. 7501. https://doi.org/10.1109/TIM.2021.3052001
  3. Durmuşa N.G., Lin R.L., Kozbergc M., Dermici D., Khademhosseini A., Demirci U. // Encyclopedia of Microfluidics and Nanofluidics. Living Reference Work. / Ed. D. Li. New York: Springer Science+Business Media, 2014. https://doi.org/10.1007/978-3-642-27758-0_10-2
  4. Lange K., Rapp B.E., Rapp M. // Anal. Bioanal. Chem. 2008. V. 391. P. 1509–1519. https://doi.org/10.1007/s00216-008-1911-5
  5. Guliy O.I., Zaitsev B.D., Borodina I.A. // Nanobioanalytical Approaches to Medical Diagnostics. / Eds P.K. Maurya, P. Chandra. Elsevier Ltd. Woodhead Publishing, 2022. Chapter 5. pp. 143–177. https://doi.org/10.1016/B978-0-323-85147-3.00004-9
  6. Guliy O.I., Zaitsev B.D., Borodina I.A. // Sensors. 2023. V. 23. P. 6292. https://doi.org/10.3390/s23146292
  7. Rocha-Gaso M.I., March-Iborra C., Montoya-Baides A., Arnau-Vives A. // Sensors. 2009. V. 9. P. 5740–5769. https://doi.org/10.3390/s90705740
  8. Lee J., Choi Y.-S., Lee Y., Lee H.J., Lee J.N., Kim S.K. et al. // Anal. Chem. 2011. V. 83. P. 8629–8635. https://doi.org/10.1021/ac2020849
  9. Han S.B., Lee S.S. // Micromachines 2024. V. 15. P. 249. https://doi.org/10.3390/mi15020249
  10. Zhang J., Zhang X., Wei X., Xue Y., Wan H., Wang P. // Anal. Chim. Acta. 2021. V. 1164. P. 338321. https://doi.org/10.1016/j.aca.2021.338321
  11. Mascini M., Del Carlo M., Compagnone D., Cozzani I., Tiscar P.G., Mpamhanga C.P. et al. // Anal. Lett. 2006. V. 39. № 8. P. 1627–1642. https://doi.org/10.1080/00032710600713529
  12. Luengwilai K., Beckles D.M., Saltveit M.E. // Postharvest Biol. Technol. 2012. V. 63. № 1. P. 123–128. https://doi.org/10.1016/j.postharvbio.2011.06.017
  13. Polenta G.A., Guidi S.M., Ambrosi V., Denoya G.I. // Curr. Res. Food Sci. 2020. V. 3. P. 329–338. https://doi.org/10.1016/j.crfs.2020.09.002
  14. Kampinga H.H., Hageman J., Vos M.J., Kubota H., Tanguay R.M., Bruford E.A. et al. // Cell Stress Chaperones. 2009. V. 14. № 1. P. 105–111. https://doi.org/10.1007/s12192-008-0068-7
  15. Maksimovich N.Y., Bon L.I. // J. Biomed. 2020. V. 16. № 2. P. 60–67. https://doi.org/10.33647/2074-5982-16-2-60-67
  16. Shevtsov M., Balogi Z., Khachatryan W., Gao H., Vígh L., Multho G. // Cells. 2020. V. 9. P. 1263. https://doi.org/10.3390/cells9051263
  17. Rokutan K. // J. Gastroenterol. Hepatol. 2000. 15(Suppl):D. P. 12–19. https://doi.org/10.1046/j.1440-1746.2000.02144.x
  18. Waters E.R. // J. Exp. Bot. 2013. V. 64. № 2. P. 391–403. https://doi.org/10.1093/jxb/ers355
  19. Guliy O.I., Staroverov S.A., and Dykman L.A. // Appl. Biochem. Microbiol. 2023. V. 59. № 4. P. 395–407. https://doi.org/10.1134/S0003683823040063
  20. Bayer C., Liebhardt M.E., Schmid T.E., Trajkovic-Arsic M., HubeK., Specht H.M. et al. // Int. J. Radiat. Oncol. Biol. Phys. 2014. V. 88. № 3. P. 694–700. https://doi.org/10.1016/j.ijrobp.2013.11.008
  21. Qu B., Jia Y., Liu Y., Wang H., Ren G., Wang H. // Cell Stress and Chaperones. 2015. V. 20. P. 885–892. https://doi.org/10.1007/s12192-015-0618-8
  22. Komarova E.Y., Suezov R.V., Nikotina A.D., Aksenov N.D., Garaeva L.A., Shtam T.A. et al. // Sci. Rep. 2021. V. 11. P. 21314. https://doi.org/10.1038/s41598-021-00734-4
  23. Staroverov S.A., Kozlov S.V., Brovko F.A., Fursova K.K., Shardin V.V., Fomin A.S. et al. // Biosens. Bioelectron.: X. 2022. V. 11. P. 100211. https://doi.org/10.1016/j.biosx.2022.100211
  24. Dykman L.A., Staroverov S.A., Vyrshchikov R.D., Fursova K.K., Brovko F.A., Soldatov D.A., Guliy O.I. // Appl. Biochem.d Microbiol. 2023. V. 59. № 4. P. 539–545. https://doi.org/10.1134/S0003683823040051
  25. Guliy O.I., Khanadeev V.A., Dykman L.A. // Front. Biosci. (Elite Ed.) 2024. V. 16. №. 3. P. 24. https://doi.org/10.31083/j.fbe1603024
  26. Petrenko V.A. // Viruses 2024. V. 16. P. 968. https://doi.org/10.3390/v16060968
  27. Guliy O.I., Zaitsev B.D., Borodina I.A., Staroverov S.A., Vyrshchikov R.D., Fursova K.K. et al. // Microchem. J. 2024. V. 207. 111661. https://doi.org/10.1016/j.microc.2024.111661
  28. Ulitin A.B., Kapralova M.V., Laman A.G., Shepelyakovskaya A.O., Bulgakova E.V., Fursova K.K. et al. // Dokl. Biochem. Biophys. 2005. V. 405. P. 437–440. https://doi.org/10.1007/s10628-005-0134-3
  29. Calderwood S.K., Khaleque M.A., Sawyer D.B., Ciocca D.R. // Trends Biochem. Sci. 2006. V. 31. P. 164–172. https://doi: 10.1016/j.tibs.2006.01.006

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Schematic diagram of a liquid sensor based on a resonator with a transverse electric field and the general scheme of the experiment.

Baixar (258KB)
3. Fig. 2. Frequency dependences of the electrical impedance modulus of the sensor for a buffer solution with a conductivity of 50 μS/cm before (1) and after (2) adding P3X63Ag8.653 cell lines.

Baixar (74KB)
4. Fig. 3. Frequency dependences of the electrical impedance modulus of the compact sensor for a container with buffer solutions of different conductivity and P3X63Ag8.653 cell lines before (1) and after (2) adding phage antibodies specific to the HSP antigen. Conductivity of solutions: a – 50; b — 90; c – 180; g — 350; d — 600; e — 1180 μS/cm; g — dependence of the change in the electrical impedance modulus on the conductivity of the buffer solution at a frequency of 6.6 MHz.

Baixar (364KB)
5. Fig. 4. Results of microscopy of mouse myeloma cell line P3X63Ag8.653 coated with phage antibodies specific to HSP of the cell line P3X63Ag8.653: a – FITCx40 fluorescence, b – DAPIx40 dye fluorescence. Phage antibodies are marked with arrows.

Baixar (244KB)
6. Fig. 5. Frequency dependences of the electrical impedance modulus of the compact sensor for a container with CHO cell lines before (1) and after (2) the addition of phage antibodies specific to HSP isolated from P3X63Ag8.65 cell lines.

Baixar (79KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025