Time Synchronization in Satellite Quantum Key Distribution
- Authors: Miller A.V.1
-
Affiliations:
- Moscow Centre for Quantum Technologies
- Issue: Vol 59, No 4 (2023)
- Pages: 13-27
- Section: Methods of Signal Processing
- URL: https://ruspoj.com/0555-2923/article/view/667561
- DOI: https://doi.org/10.31857/S0555292323040022
- EDN: https://elibrary.ru/RHSPTP
- ID: 667561
Cite item
Abstract
Time synchronization is one of the most crucial issues that must be addressed in developing quantum key distribution (QKD) systems. It not only lets the transmitter and the receiver to assign a sequence number to each event and then do correct basis reconciliation, but also allows to increase signal-to-noise ratio. Time synchronization in satellite communications is especially complicated due to such factors as high loss, signal fading, and Doppler effect. In this work, a simple, efficient, and robust algorithm for time synchronization is proposed. It was tested during experiments on QKD between Micius, the world’s first quantum communications satellite, and an optical ground station located in Russia. The obtained synchronization precision lies in the range from 467 to 497 ps. The authors compare their algorithm for time synchronization with the previously used methods. The proposed approach can also be applied to terrestrial QKD systems.
About the authors
A. V. Miller
Moscow Centre for Quantum Technologies
Author for correspondence.
Email: avm@mcqt.ru
ООО “Московский центр квантовых технологий”
Moscow, RussiaReferences
- Bennett C.H., Brassard G. Quantum Cryptography: Public Key Distribution and Coin Tossing // Proc. Int. Conf. of Computers, Systems & Signal Processing. Bangalore, India. Dec. 9–12, 1984. V. 1. P. 175–179.
- Bennett C.H., Bessette F., Brassard G., Salvail L., Smolin J. Experimental Quantum Cryptography// J. Cryptol. 1992. V. 5. № 1. P. 3–28. https://doi.org/10.1007/BF00191318
- Schmitt-Manderbach T., Weier H., Furst M., Ursin R., Tiefenbacher F., Scheidl T., Perdigues J., Sodnik Z., Kurtsiefer C., Rarity J.G., Zeilinger A., Weinfurter H Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km // Phys. Rev. Lett. 2007. V. 98. № 1. P. 010504 (4 pp.). https://doi.org/10.1103/PhysRevLett.98.010504
- Liu Y., Zhang W.-J., Jiang C., Chen J.-P., Zhang C., Pan W.-X., Ma D., Dong H., Xiong J.-M., Zhang C.-J., Li H., Wang R.-C., Wu J., Chen T.-Y., You L., Wang X.-B., Zhang Q., Pan, J.-W. Experimental Twin-Field Quantum Key Distribution over 1000 km Fiber Distance // Phys. Rev. Lett. 2023. V. 130. № 21. P. 210801 (6 pp.). https://doi.org/10.1103/PhysRevLett.130.210801
- Liao S.-K., Cai W.-Q., Liu W.-Y., Zhang L., Li Y., Ren J.-G., Yin J., Shen Q., Cao Y., Li Z.-P., Li F.-Z., Chen X.-W., Sun L.-H., Jia J.-J., Wu J.-C., Jiang X.-J., Wang J.-F., Huang Y.-M., Wang Q., Zhou Y.-L., Deng L., Xi T., Ma L., Hu T., Zhang Q., Chen Y.-A., Liu N.-L., Wang X.-B., Zhu Z.-C., Lu C.-Y., Shu R., Peng C.-Z., Wang J.-Y., Pan J.-W. Satellite-to-Ground Quantum Key Distribution // Nature. 2017. V. 549. № 7670. P. 43–47. https://doi.org/10.1038/nature23655
- Liao S.-K., Cai W.-Q., Handsteiner J., Liu B., Yin J., Zhang L., Rauch D., Fink M., Ren J.-G., Liu W.-Y., Li Y., Shen Q., Cao Y., Li F.-Z., Wang J.-F., Huang Y.-M., Deng L., Xi T., Ma L., Hu T., Li L., Liu N.-L., Koidl F., Wang P., Chen Y.-A., Wang X.-B., SteindorferM., Kirchner G., Lu C.-Y., Shu R., Ursin R., Scheidl T., Peng C.-Z., Wang J.-Y., Zeilinger A., Pan J.-W. Satellite-Relayed Intercontinental Quantum Network // Phys. Rev.Lett. 2018. V. 120. № 3. P. 030501 (4 pp.). https://doi.org/10.1103/PhysRevLett.120. 030501
- Chen Y.-A., Zhang Q., Chen T.-Y., Cai W.-Q., Liao S.-K., Zhang J., Chen K., Yin J., Ren J.-G., Chen Z., Han S.-L., Yu Q., Liang K., Zhou F., Yuan X., Zhao M.-S., Wang T.-Y., Jiang X., Zhang L., Liu W.-Y., Li Y., Shen Q., Cao Y., Lu C.-Y., Shu R., Wang J.-Y., Li L., Liu N.-L., Xu F., Wang X.-B., Peng C.-Z., Pan J.-W. An Integrated Space-to-Ground Quantum Communication Network over 4,600 Kilometres // Nature. 2021. V. 589. № 7841. P. 214–219. https://doi.org/10.1038/s41586-020-03093-8
- Yin J., Cao Y., Li Y.-H., Liao S.-K., Zhang L., Ren J.-G., Cai W.-Q., Liu W.-Y., Li B., Dai H., Li G.-B., Lu Q.-M., Gong Y.-H., Xu Y., Li S.-L., Li F.-Z., Yin Y.-Y., Jiang Z.-Q., Li M., Jia J.-J., Ren G., He D., Zhou Y.-L., Zhang X.-X., Wang N., Chang X., Zhu Z.-C., Liu N.-L., Chen Y.-A., Lu C.-Y., Shu R., Peng C.-Z., Wang J.-Y., Pan J.-W. Satellite-Based Entanglement Distribution over 1200 Kilometers // Science. 2017. V. 356. № 6343. P. 1140–1144. https://doi.org/10.1126/science.aan3211
- Yin J., Li Y.-H., Liao S.-K., Yang M., Cao Y., Zhang L., Ren J.-G., Cai W.-Q., Liu W.-Y., Li S.-L., Shu R., Huang Y.-M., Deng L., Li L., Zhang Q., Liu N.-L., Chen Y.-A., Lu C.-Y., Wang X.-B., Xu F., Wang J.-Y., Peng C.-Z., Ekert A.K., Pan J.-W. Entanglement-Based Secure Quantum Cryptography over 1,120 Kilometres // Nature. 2020. V. 582. № 7813.P. 501–505. https://doi.org/10.1038/s41586-020-2401-y
- Ren J.-G., Xu P., Yong H.-L., Zhang L., Liao S.-K., Yin J., Liu W.-Y., Cai W.-Q., Yang M., Li L., Yang K.-X., Han X., Yao Y.-Q., Li J., Wu H.-Y., Wan S., Liu L., Liu D.-Q., Kuang Y.-W., He Z.-P., Shang P., Guo C., Zheng R.-H., Tian K., Zhu Z.-C., Liu N.-L., Lu C.-Y., Shu R., Chen Y.-A., Peng C.-Z., Wang J.-Y., Pan J.-W. GroundtoSatellite Quantum Teleportation // Nature. 2017. V. 549. № 7670. P. 70–73. https://doi.org/10.1038/nature23675
- Beveratos A., Brouri R., Gacoin T., Villing A., Poizat J.-P., Grangier P. Single Photon Quantum Cryptography // Phys. Rev. Lett. 2002. V. 89. № 18. P. 187901 (4 pp.). https://doi.org/10.1103/PhysRevLett.89.187901
- Stucki D., Gisin N., Guinnard O., Ribordy G., Zbinden H. Quantum Key Distribution over 67 km with a Plug&Play System // New J. Phys. 2002. V. 4. P. 41 (8 pp.). https://doi.org/10.1088/1367-2630/4/1/341
- Sasaki M., Fujiwara M., Ishizuka H., Klaus W., Wakui K., Takeoka M., Miki S., Yamashita T., Wang Z., Tanaka A., Yoshino K., Nambu Y., Takahashi S., Tajima A., Tomita A., Domeki T., Hasegawa T., Sakai Y., Kobayashi H., Asai T., Shimizu K., Tokura T., Tsurumaru T., Matsui M., Honjo T., Tamaki K., Takesue H., Tokura Y., Dynes J.F., Dixon A.R., Sharpe A.W., Yuan Z.L., Shields A.J., Uchikoga S., Legre M., Robyr S., Trinkler P., Monat L., Page J.-B., Ribordy G., Poppe A., Allacher A., Maurhart O., Langer T., Peev M., Zeilinger A. Field Test of Quantum Key Distribution in the Tokyo QKD Network // Opt. Express. 2011. V. 19. № 11. P. 10387–10409. https://doi.org/10.1364/OE.19.010387
- Wang S., Chen W., Yin Z.-Q., Li H.-W., He D.-Y., Li Y.-H., Zhou Z., Song X.-T., Li F.-Y., Wang D., Chen H., Han Y.-G., Huang J.-Z., Guo J.-F., Hao P.-L., Li M., Zhang C.-M., Liu D., Liang W.-Y., Miao C.-H., Wu P., Guo G.-C., Han Z.-F. Field and Long-Term Demonstration of a Wide Area Quantum Key Distribution Network // Opt. Express. 2014. V. 22. № 18. P. 21739–21756. https://doi.org/10.1364/OE.22.021739
- Wang C., Li Y., Cai W., Yang M., Liu W., Liao S., Peng C. Robust Aperiodic Synchronous Scheme for Satellite-to-Ground Quantum Key Distribution // Appl. Opt. 2021. V. 60. №16. P. 4787–4792. https://doi.org/10.1364/AO.425085
- Shakhovoy R., Puplauskis M., Sharoglazova V., Maksimova E., Hydyrova S., Kurochkin V., Duplinskiy A. Wavelength- and Time-Division Multiplexing via Pump Current Variation of a Pulsed Semiconductor Laser—A Method of Synchronization for Quantum Key Distribution // IEEE J. Quantum Electron. 2023. V. 59. № 1. Article No. 8000110 (10 pp.). https://doi.org/10.1109/JQE.2023.3237265
- Calderaro L., Stanco A., Agnesi C., Avesani M., Dequal D., Villoresi P., Vallone G. Fast and Simple Qubit-Based Synchronization for Quantum Key Distribution // Phys. Rev. Appl. 2020. V. 13. №5. P. 054041 (9 pp.). https://doi.org/10.1103/PhysRevApplied.13.054041
- Wang C.-Z., Li Y., Cai W.-Q., Liu W.-Y., Liao S.-K., Peng C.-Z. Synchronization Using Quantum Photons for Satellite-to-Ground Quantum Key Distribution // Opt. Express. 2021. V. 29. № 19. P. 29595–29603. https://doi.org/10.1364/OE.433631
- Takenaka H., Carrasco-Casado A., Fujiwara M., Kitamura M., Sasaki M., Toyoshima M. Satellite-to-Ground Quantum-Limited Communication Using a 50-kg-Class Microsatellite //Nat. Photon. 2017. V. 11. P. 502–508. https://doi.org/10.1038/nphoton.2017.107 20. Lu C.-Y., Cao Y., Peng C.-Z., Pan J.-W. Micius Quantum Experiments in Space // Rev.Mod. Phys. 2022. V. 94. № 3. P. 035001 (46 pp.). https://doi.org/10.1103/RevModPhys. 94.035001
- Хмелев А.В., Дуплинский А.В., Майборода В.Ф., Бахшалиев Р.М., Баланов М.Ю., Курочкин В.Л., Курочкин Ю.В. Регистрация однофотонного сигнала от низколетящих спутников для целей спутникового квантового распределения ключей // Письма в ЖТФ. 2021. Т. 47. № 17. С. 46–49. https://doi.org/10.21883/PJTF.2021.17.51387. 18817
- Khmelev A.V., Duplinsky A.V., Kurochkin V.L., Kurochkin Y.V. Stellar Calibration of the Single-Photon Receiver for Satellite-to-Ground Quantum Key Distribution // J. Phys.: Conf. Ser. 2021. V. 2086. № 1. P. 012137 (5 pp.). https://doi.org/10.1088/1742-6596/2086/1/012137
- Khmelev A.V., Ivchenko E.I., Miller A.V., Duplinsky A.V., Kurochkin V.L., Kurochkin Yu.V. Semi-Empirical Satellite-to-Ground Quantum Key Distribution Model for Realistic Receivers // Entropy. 2023. V. 25. № 4. P. 670 (14 pp.), https://doi.org/10.3390/e25040670 24. Miller A.V., Pismeniuk L.V., Duplinsky A.V., Merzlinkin V.E., Plukchi A.A., TikhonovaK.A., Nesterov I.S., Sevryukov D.O., Levashov S.D., Fetisov V.V., Krasnopejev S.V., Bakhshaliev R.M. Vector—Towards Quantum Key Distribution with Small Satellites // EPJ Quantum Technol. 2023. V. 10. Article No. 52 (20 pp.). https://doi.org/10.1140/epjqt/s40507-023-00208-8
- Wu Q.-L., Han Z.-F., Miao E.-L., Liu Y., Dai Y.-M., Guo G.-C. Synchronization of Free-Space Quantum Key Distribution // Opt. Commun. 2007. V. 275. № 2. P. 486–490. https://doi.org/10.1016/j.optcom.2007.03.068
Supplementary files
