Convolutional Codes with Optimum Bidirectional Distance Profile

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We define the bidirectional distance profile (BDP) of a convolutional code as the minimum of the distance profiles of the code and its corresponding “reverse” code. We present tables of codes with the optimum BDP (OBDP), which minimize the average complexity of bidirectional sequential decoding algorithms. The computer search is accelerated by the facts that optimum distance profile (ODP) codes of larger memory must have ODP codes of smaller memory as their “prefixes”, and that OBDP codes can be obtained by “concatenating” ODP and reverse ODP codes of smaller memory. We compare the performance of OBDP codes and other codes by simulation.

About the authors

I. Stanojevi´c

Faculty of Technical Sciences, University of Novi Sad

Email: cet_ivan@uns.ac.rs
Novi Sad, Serbia

V. Senk

Faculty of Technical Sciences, University of Novi Sad

Author for correspondence.
Email: vojin_senk@uns.ac.rs
Novi Sad, Serbia

References

  1. Johannesson R., Zigangirov K.Sh. Fundamentals of Convolutional Coding. Piscataway, NJ: IEEE Press; Hoboken, NJ: Wiley, 2015.
  2. Зигангиров К.Ш. Некоторые последовательные процедуры декодирования // Пробл. передачи информ. 1966. Т. 2. № 4. С. 13–25. https://www.mathnet.ru/ppi1966
  3. Jelinek F. Fast Sequential Decoding Algorithm Using a Stack // IBM J. Res. Develop. 1969.V. 13. № 6. P. 675–685. https://doi.org/10.1147/rd.136.0675
  4. Fano R.M. A Heuristic Discussion of Probabilistic Decoding // IEEE Trans. Inform. Theory. 1963. V. 9. № 2. P. 64–74. https://doi.org/10.1109/TIT.1963.1057827
  5. Chevillat P., Costello D. An Analysis of Sequential Decoding for Specific Time-Invariant Convolutional Codes // IEEE Trans. Inform. Theory. 1978. V. 24. № 4. P. 443–451. https://doi.org/10.1109/TIT.1978.1055916
  6. Narayanaswamy B., Negi R., Khosla P. An Analysis of the Computational Complexity of Sequential Decoding of Specific Tree Codes over Gaussian Channels // Proc. 2008 IEEE Int. Symp. on Information Theory (ISIT’2008). Toronto, ON, Canada. July 6–11, 2008. P. 2508–2512. https://doi.org/10.1109/ISIT.2008.4595443
  7. Johannesson R. Robustly Optimal Rate One-Half Binary Convolutional Codes // IEEE Trans. Inform. Theory. 1975. V. 21. № 4. P. 464–468. https://doi.org/10.1109/TIT.1975.1055397
  8. Johannesson R. Some Long Rate One-Half Binary Convolutional Codes with an Optimum Distance Profile // IEEE Trans. Inform. Theory. 1976. V. 22. № 5. P. 629–631. https://doi.org/10.1109/TIT.1976.1055599
  9. Johannesson R. Some Rate 1/3 and 1/4 Binary Convolutional Codes with an Optimum Distance Profile // IEEE Trans. Inform. Theory. 1977. V. 23. № 2. P. 281–283. https://doi.org/10.1109/TIT.1977.1055687
  10. Hagenauer J. High Rate Convolutional Codes with Good Distance Profiles // IEEE Trans. Inform. Theory. 1977. V. 23. № 5. P. 615–618. https://doi.org/10.1109/TIT.1977.1055777
  11. Johannesson R., Paaske E. Further Results on Binary Convolutional Codes with an Op- timum Distance Profile // IEEE Trans. Inform. Theory. 1978. V. 24. № 2. P. 264–268. https://doi.org/10.1109/TIT.1978.1055850
  12. Johannesson R., St˚ahl P. New Rate 1/2, 1/3, and 1/4 Binary Convolutional Encoders with an Optimum Distance Profile // IEEE Trans. Inform. Theory. 1999. V. 45. № 5. P. 1653–1658. https://doi.org/10.1109/18.771238
  13. Sone N., Mohri M., Morii M., Sasano H. Optimal Free Distance Convolutional Codes for Rates 1/2, 1/3, and 1/4 // Electron. Lett. 1999. V. 35. № 15. P. 1240–1241. https://doi. org/10.1049/el:19990871
  14. Frenger P., Orten P., Ottosson T. Convolutional Codes with Optimum Distance Spec- trum // IEEE Commun. Lett. 1999. V. 3. № 11. P. 317–319. https://doi.org/10.1109/4234.803468
  15. Hug F. Codes on Graphs and More: Ph.D. Thesis. Dept. of Electrical and Information Technology, Lund Univ., Lund, Sweden, 2012.
  16. Sˇenk V., Radivojac P. The Bidirectional Stack Algorithm // Proc. 1997 IEEE Int. Symp. on Information Theory (ISIT’97). Ulm, Germany. June 29 – July 4, 1997. P. 500. https://doi.org/10.1109/ISIT.1997.613437
  17. Kallel S., Li K. Bidirectional Sequential Decoding // IEEE Trans. Inform. Theory. 1997. V. 43. № 4. P. 1319–1326. https://doi.org/10.1109/18.605602
  18. Bocharova I.E., Handlery M., Johannesson R., Kudryashov B.D. BEAST Decoding of Block Codes Obtained via Convolutional Codes // IEEE Trans. Inform. Theory. 2005. V. 51. № 5. P. 1880–1891. https://doi.org/10.1109/TIT.2005.846448
  19. Xu R., Kocak T., Woodward G., Morris K., Dolwin C. High Throughput Parallel Fano Decoding // IEEE Trans. Commun. 2011. V. 59. № 9. P. 2394–2405. https://doi.org/10. 1109/TCOMM.2011.062011.100236
  20. Stanojevi´c I., Sˇenk V. Convolutional Codes with Optimum Bidirectional Distance Profile, https://arXiv:2210.15787v4 [cs.IT], 2022.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences