Cytokine levels in individuals occupationally exposed to ionising radiation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Cytokines are proteins produced by various cells of the body and are intercellular messengers. They perform many functions that are very important for understanding the pathogenesis of early and late effects of exposure, their prevention and treatment. The purpose of this work was to study the cytokine profile in individuals exposed to chronic occupational exposure. The main group consisted of employees of the Mayak nuclear industry enterprise who were exposed to chronic exposure as a result of their professional activities. The control group consisted of residents of the city of Ozyersk, Chelyabinsk region, who were not exposed to chronic exposure as a result of their professional activities. The study used enzyme immunoassay, which was carried out in accordance with the instructions of the manufacturers of the test systems. Statistical analysis of the obtained data was carried out using the Mann–Whitney method. Serum levels of IFNγ and TNFα were increased in the occupationally exposed group. In addition, it was found that the content of IL-18 и IL-35 in blood serum increased with an increase in the dose of internal α-irradiation to the red bone marrow (RBM), and the concentration of IL-17А, IL-35 и TNFα – with an increase in the dose of external irradiation on the RBM. External γ-irradiation suppressed the expression of IL-27 in the blood serum of workers. The content of anti-inflammatory cytokines in the blood serum of exposed individuals was not changed. The results obtained allow us to conclude that the expression profile of the studied cytokines was shifted to the inflammatory side in the long-term period after the end of occupational exposure.

Full Text

Restricted Access

About the authors

Valentina L. Rybkina

South Ural Biophysics Institute affiliated to the Federal Medical Biological Agency

Email: clinic@subi.su
ORCID iD: 0000-0001-5096-9774
Russian Federation, Ozyersk

Darya S. Oslina

South Ural Biophysics Institute affiliated to the Federal Medical Biological Agency

Author for correspondence.
Email: clinic@subi.su
ORCID iD: 0000-0003-4757-7969
Russian Federation, Ozyersk

Tamara V. Azizova

South Ural Biophysics Institute affiliated to the Federal Medical Biological Agency

Email: clinic@subi.su
ORCID iD: 0000-0001-6954-2674
Russian Federation, Ozyersk

Elena D. Drugova

N.I. Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation

Email: clinic@subi.su
ORCID iD: 0000-0002-9304-7371
Russian Federation, Moscow

Galina V. Adamova

South Ural Biophysics Institute affiliated to the Federal Medical Biological Agency

Email: clinic@subi.su
ORCID iD: 0000-0002-8776-4104
Russian Federation, Ozyersk

References

  1. Minafra L., Bravatà V. Cell and molecular response to IORT treatment. Translat. Cancer Res. 2014;3(1):32–47. doi: 10.3978/j.issn.2218-676X.2014.02.03.
  2. Hader M., Frey B., Fietkau R. et al. Immune biological rationales for the design of combined radio- and immunotherapies. Cancer Immunol. Immunother. 2020;69(2):293-306. doi: 10.1007/s00262-019-02460-3.
  3. Li K., Chen Y., Li X., Lei S. et al. Alteration of cytokine profiles in uranium miners exposed to long-term low dose ionizing radiation. Sci. World J. 2014;2014:216408. doi: 10.1155/2014/216408.
  4. Gyuleva I., Djounova J., Rupova I. Impact of Low-Dose Occupational Exposure to Ionizing Radiation on T-Cell Populations and Subpopulations and Humoral Factors Included in the Immune Response. Dose Response. 2018;16(3):1559325818785564. doi: 10.1177/1559325818785564.
  5. Lumniczky K., Impens N., Armengol G. et al. Low dose ionizing radiation effects on the immune system. Environ. Int. 2021;149:106212. doi: 10.1016/j.envint.2020.106212.
  6. Rybkina V, Bannikova M, Adamova G. Immunological markers of chronic occupational radiation exposure. Health Phys. 2018;115(1):108–113. doi: 10.1097/HP.0000000000000855.
  7. Birchall A., Vostrotin V., Puncher M. et al. The Mayak Worker Dosimetry System (MWDS-2013) for internally deposited plutonium: an overview. Radiat. Prot. Dosim. 2017;176:10–31. doi: 10.1093/rpd/ncx195.
  8. Vasilenko E.K., Scherpelz R.I., Gorelov M.V. et al. External dosimetry reconstruction for Mayak workers. AAHP Special Session Health Physics Society Annual Meeting. 2010. Available at: http://www.hps1.org/aahp/public/AAHP_Special_Sessions/ 2010_Salt_Lake_City/pm-1.pdf Accessed January 18, 2023.
  9. Azizova T.V., Day R.D., Wald N. et al. The “Clinic” medical-dosimetric database of Mayak production association workers: structure, characteristics and prospects of utilization. Health Phys. 2008;94(5):449–458. doi: 10.1097/01.HP.0000300757.00912.a2.
  10. Гланц С. Медико-биологическая статистика. Пер с анг. М.: Практика, 1999. – 459 с. [Glanc S. Primer of biostatistics. M.: Praktika; 1999. 459 p. (In Russ)]
  11. “STATISTICA” TIBCO Software Inc., Palo Alto, CA.
  12. Жетписбаев Б.А., Кыдырмолдина А.Ш., Толепбергенова М.Ж. и др. Динамика изменений провоспалительных цитокинов в отдаленном периоде после воздействия различных доз гамма-радиаций. Вестн. КазНМУ. 2014;4:242–245. [Zhetpisbaev B.A., Kydyrmoldina A.Sh., Tolepbergenova M.Zh. et al. Dinamika izmenenii provospalitel’nykh tsitokinov v otdalennom periode posle vozdeistviya razlichnykh doz gamma-radiatsii = Dynamics of changes in proinflammatory cytokines in the remote period after the impact of different doses of gamma radiation. Vestnik KazNMU. 2014;4:242–245. (In Russ)]
  13. Zhang Q. Zhu L., Wang G. et al. Ionizing radiation promotes CCL27 secretion from keratinocytes through the cross talk between TNFα and ROS. J. Biochem. Molec. Toxicol. 2017;31(3)e21868. doi: 10.1002/jbt.21868
  14. Bouges E., Segers C., Lebeer S. et al. Human intestinal organoids and microphysiological systems for modeling radiotoxicity and assessing radioprotective agents. Cancers. 2023;15:5859. doi: 10.3390/cancers15245859.
  15. Pal S., Yadav P., Sainis K.B., Shankar B.S. TNF-α and IGF-1 differentially modulate ionizing radiation responses of lung cancer cell lines. Cytokine. 2018 Jan;101:89-98. doi: 10.1016/j.cyto.2016.06.015.
  16. Stelcer E., Kulcenty K., Rucinski M. et al. Ionizing radiation exposure of stem cell-derived chondrocytes affects their gene and microRNA expression profiles and cytokine production. Sci. Rep. 2021;11(1):7481. doi: 10.1038/s41598-021-86230-1.
  17. Nielsen S., Bassler N., Grzanka L. et al. Proton scanning and X-ray beam irradiation induce distinct regulation of inflammatory cytokines in a preclinical mouse model. Int. J. Radiat. Biol. 2020;96(10):1238-1244 doi.org/10.1080/09553002.2020.1807644.
  18. Senyuk O.F., Kavsan V.M., Muller W.E. Long-term effects of low-dose irradiation on human health. Cell. Molec. Biol. 2002;48(4):393–409. doi: 10.1093/jrr/rrz059.
  19. Damm R., Pech M., Haag F. et al. TNF-α Indicates Radiation-induced Liver Injury After Interstitial High Dose-rate Brachytherapy. In Vivo. 2022;36(5):2265-2274. doi: 10.21873/invivo.12955.
  20. Aneva N., Zaharieva E., Katsarska O. et al. Inflammatory profile dysregulation in nuclear workers occupationally exposed to low-dose gamma radiation. J. Radiat. Res. 2019;60(6):768–770. doi: 10.1093/jrr/rrz059.
  21. Аклеев А.А., Долгушин И.И. Особенности иммунного статуса у людей, перенесших хронический лучевой синдром, в отдаленные сроки. Радиация и риск. 2018;27(2):76–85. doi: 10.21870/0131-3878-2018-27-2-76-85. [Akle-ev A.A., Dolgushin I.I. Osobennosti immunnogo statusa u lyudei, perenesshikh khronicheskii luchevoi sindrom, v otdalennye sroki = Immune status of persons with CRS at later time points. Radiatsiya i risk. 2018;27(2):76–85. (In Russ.)]
  22. Гришина Л.В. Распространенность иммунопатологических синдромов и характеристика иммунной системы у лиц, подвергшихся влиянию малых доз радиации: Aвтореф. дис. … канд. биол. наук. Новосибирск, 2004. 23 c. [Grishina L.V. Rasprostranennost’ immunopatologicheskikh sindromov i kharakteristika immunnoi sistemy u lits, podvergshikhsya vliyaniyu malykh doz radiatsii = The prevalence of immunopathological syndromes and characteristics of the immune system in individuals exposed to low doses of radiation: Avtoreferat dissertatsii na soiskanie uchenoi stepeni kandidata biologicheskikh nauk = Ph. D. Med. Sci. Thesis. Novosibirsk; 2004. 23 p. (In Russ.)]
  23. Тополянская С.В. Фактор некроза опухоли-альфа и возраст-ассоциированная патология. Архив внутренней медицины. 2020;10(6):414–421. doi: 10.20514/2226-6704-2020-10-6-414-421 [Topolyanskaya S.V. Faktor nekroza opuholi-al’fa i vozrast-associirovannaya patologiya = Tumor necrosis factor-alpha and age-related pathologies. Arhiv Vnutrennej Mediciny. 2020;10(6):414–421. (In Russ.)]
  24. Morel D., Robert C., Paragios N. et al. Translational Frontiers and Clinical Opportunities of Immunologically Fitted Radiotherapy. Clin. Cancer Res. 2024 Jun 3;30(11):2317-2332. doi: 10.1158/1078-0432.CCR-23-3632.
  25. Wang L.P., Wang Y.W., Wang B.Z. et al. Expression of interleukin-17A in lung tissues of irradiated mice and the influence of dexamethasone. Sci. World J. 2014; Article ID 251067:7. Available at: http://dx.doi.org/10.1155/2014/251067 Accessed January 19, 2023.
  26. Kak G., Raza M., Tiwari BK. Interferon-gamma (IFNγ): Exploring its implications in infectious diseases. Biomol. Concepts. 2018;9(1):64–79. https://doi.org/10.1515/bmc-2018-0007.
  27. Akiyama Y., Harada K., Miyakawa J. et al. Th1/17 polarization and potential treatment by an anti-interferon-γ DNA aptamer in Hunner-type interstitial cystitis. Science. 2023;26(11):108262. doi: 10.1016/j.isci.2023.108262.
  28. D’Souza B.N., Yadav M., Chaudhary P.P. et al. Derivation of novel metabolic pathway score identifies alanine metabolism as a targetable influencer of TNF-alpha signaling. Heliyon. 2024;10(13):e33502. doi: 10.1016/j.heliyon.2024.e33502.
  29. Adegbola S.O., Sahnan K., Warusavitarne J. et al. Anti-TNF Therapy in Crohn’s Disease. Int. J. Mol. Sci. 2018;19:2244. doi: 10.3390/ijms19082244.
  30. Liang Y., Li Y., Lee C. et al. Ulcerative colitis: molecular insights and intervention therapy. Mol. Biomed. 2024;5(1):42. doi: 10.1186/s43556-024-00207-w.
  31. Levin A.D., Wildenberg M.E., van den Brink G.R. Mechanism of Action of Anti-TNF Therapy in Inflammatory Bowel Disease. Crohns Colitis. 2016;10:989–997. doi: 10.1093/ecco-jcc/jjw053.
  32. Celis R., Cuervo A., Ramirez J. et al. Psoriatic Synovitis: Singularity and Potential Clinical Implications. Front. Med. (Lausanne). 2019;6:14 doi: 10.3389/fmed.2019.00014.
  33. Shabgah A.G., Fattahi E., Shahneh F.Z. Interleukin-17 in human inflammatory diseases. Postepy Dermatol. Alergol. 2014;31(4):256-61. doi: 10.5114/pdia.2014.40954.
  34. Kaplanski G. Interleukin-18: Biological properties and role in disease pathogenesis. Immunol. Rev. 2018;281(1):138-153. doi: 10.1111/imr.12616.
  35. Meka R.R., Venkatesha S.H., Dudics S. et al. IL-27-induced modulation of autoimmunity and its therapeutic potential. Autoimmun. Rev. 2015;14(12):1131-1141. doi: 10.1016/j.autrev.2015.08.001.
  36. Morita Y., Masters E.A., Schwarz E.M. et al. Interleukin-27 and Its Diverse Effects on Bacterial Infections. Front. Immunol. 2021;12:678515. doi: 10.3389/fimmu.2021.678515.
  37. Jafarizade M., Kahe F., Sharfaei S. et al. The Role of Interleukin-27 in Atherosclerosis: A Contemporary Review. Cardiology. 2021;146:517–530. doi: 10.1159/000515359.
  38. Ye C., Yano H., Workman C.J. et al. Interleukin-35: Structure, Function and Its Impact on Immune-Related Diseases. Interferon Cytokine Res. 2021;41(11):391–406. doi: 10.1089/jir.2021.0147.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Levels of IL-2 in blood serum of the comparison group in relation to age

Download (125KB)
3. Fig. 2. Levels of IL-17A in blood serum of Mayak PAworkers in relation to the cumulative bone marrow absorbed dose from external γ-exposure

Download (136KB)
4. Fig. 3. Levels of IL-35 in blood serum of Mayak PAworkers in relation to the cumulative bone marrow absorbed dose from external γ-exposure.

Download (141KB)
5. Fig. 4. Levels of TNFα in blood serum of Mayak PAworkers in relation to the cumulative bone marrow absorbed dose from external γ-exposure.

Download (155KB)
6. Fig. 5. Levels of IL-18 in blood serum of Mayak PAworkers in relation to the cumulative bone marrow absorbed dose from internal α-exposure.

Download (146KB)
7. Fig. 6. Levels of IL-35 in blood serum of Mayak PAworkers in relation to the cumulative bone marrow absorbed dose from internal α-exposure.

Download (146KB)
8. Fig. 7. Levels of IL-27 in blood serum of Mayak PAworkers in relation to the cumulative bone marrow absorbed dose from internal α-exposure.

Download (132KB)

Copyright (c) 2024 Russian Academy of Sciences