The nye cells and figures for athermic hemitropic, isotropic and ultraisotropic micropolar elastic solids

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper deals with a method of the Nye figures construction for micropolar elastic solids. The method of tensors of the 4th and 3rd ranks representations by means of blocks of two-dimensional matrices and relationships between their elements is widely known in crystallography. Such approach makes it possible to simply determine the number of independent constitutive constants for micropolar elastic solids and guarantee the absence of relationships between them. In frameworks of the present study, the two-dimensional Nye figures for an ultraisotropic micropolar elastic solid were figured out based on the corresponding figures for hemitropic and isotropic micropolar elastic solids. It is shown that the constitutive tensors of ultraisotropic material characterized by only 4 independent constitutive constants: shear modulus of elasticity, Poisson’s ratio, characteristic nano/microlength and another dimensionless constant.

About the authors

E. Yu. Krylova

Saratov State University

Author for correspondence.
Email: kat.krylova@bk.ru
Russian Federation, Saratov

E. V. Murashkin

Ishlinsky Institute for Problems in Mechanics RAS

Email: murashkin@ipmnet.ru
Russian Federation, Moscow, 119526

Yu. N. Radaev

Ishlinsky Institute for Problems in Mechanics RAS

Email: radayev@ipmnet.ru
Russian Federation, Moscow, 119526

References

  1. Cosserat E., Cosserat F. Théorie des corps déformables. Paris: Herman et Fils, 1909. vi+226 p.
  2. Besdo D. Ein beitrag zur nichtlinearen theorie des Cosserat-kontinuums // Acta Mechanica. 1974. Vol. 20. №. 1. P. 105–131.
  3. Nowacki W. Theory of micropolar elasticity. Berlin: Springer, 1972. 285 р.
  4. Nowacki W. Theory of asymmetric elasticity. Oxford: Pergamon Press, 1986. 383 p.
  5. Lakes R. Composites and metamaterials. Singapore: World Scientific, 2020.
  6. Nye J.F. Physical Properties of Crystals, their representation by tensors and matrices. Oxford: Clarendon Press, 1957. 322+xv p.
  7. Wooster W.A. Experimental Crystal Physics. Oxford: Clarendon Press, 1957. 116+vi p.
  8. Voigt W. Lehrbuch der Kristallphysik (mit Ausschluss der Kristalloptik). Fachmedien, Wiesbaden: Springer, 1966. XXVI+979 p.
  9. Standards on Piezoelectric Crystals. New York: Proceedings of the I.R.E., 1949. 18 p.
  10. Zheng Q. S., Spencer A. J. M. On the canonical representations for Kronecker powers of orthogonal tensors with application to material symmetry problems // Int. J. Engng Sci. 1993. V. 31. Iss. 4. pp. 617–435. https://doi.org/10.1016/0020-7225(93)90054-X
  11. Murashkin E.V., Radayev Y.N. Two-dimensional nye figures for some micropolar elastic solids // Mechanics of Solids. 2023. V. 58. № 6. P. 2254–2268. https://doi.org/10.3103/S0025654423700243
  12. Murashkin E.V., Radayev Y.N. Two-dimensional Nye figures for hemitropic micropolar elastic solids // Izvestiya of saratov university. Mathematics. Mechanics. Informatics 2024. V. 24. № 1. P. 109–122. https://doi.org/10.18500/1816-9791-2024-24-1-109-122
  13. Murashkin E.V. On a method of constructing Nye figures for asymmetric theories of micropolar elasticity // Vestn. Chuvash. Gos. Ped. Univ. Im. I. Ya. Yakovleva Ser.: Mekh. Pred. Sost. 2023. № 3 (57). P. 100–111. https://doi.org/10.37972/chgpu.2023.57.3.009
  14. Murashkin E.V., Radayev Y.N. On the Theory of covariant differentiation of two point pseudotensor fields // Mechanics of Solids. 2022. V. 57. № 6. P. 1365–1373. https://doi.org/10.3103/s0025654422060255
  15. Murashkin E.V., Radayev Y.N. Covariantly constant tensors in Euclidean spaces. Elements of the theory // Vestn. Chuvash. Gos. Ped. Univ. Im. I. Ya. Yakovleva Ser.: Mekh. Pred. Sost. 2022. № 2 (52). P. 106–115. https://doi.org/10.37972/chgpu.2022.52.2.012
  16. Murashkin E.V., Radayev Y.N. Covariantly constant tensors in Euclidean spaces. Applications to continuum mechanics, // Vestn. Chuvash. Gos. Ped. Univ. Im. I. Ya. Yakovleva Ser.: Mekh. Pred. Sost. 2022. № 2 (52). P. 118–127. https://doi.org/10.37972/chgpu.2022.52.2.013
  17. Radayev Yu.N., Murashkin E.V. Generalized pseudotensor formulations of the Stokes’ integral theorem // Izvestiya of Saratov University. Mathematics. Mechanics. Informatics. 2022. V. 22. № 2. P. 205–215. https://doi.org/10.18500/1816-9791-2022-22-2-205-215
  18. Radayev Yu.N., Murashkin E.V., Nesterov T.K. On covariant non-constancy of distortion and inversed distortion tensors // Journal of Samara State Technical University. Ser. Physical and Mathematical Sciences. 2022. V. 26. № 1. P. 36–47. https://doi.org/10.14498/vsgtu1891
  19. Gurevich G.B. Foundations of the theory of algebraic invariants. Groningen: Noordhoff, 1964. 429 p.
  20. McConnell A.J. Application of Tensor Analysis. New York: Dover Publications Inc., 1957. xii+38 p.
  21. Sokolnikoff I.S. Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua. John Wiley & Sons Inc, 1964. 361 p.
  22. Radayev Yu.N. The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories // Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 2018. V. 22. № 3. P. 504–517. https://doi.org/10.14498/vsgtu1635
  23. Murashkin E.V., Radayev Y.N. On the constitutive pseudoscalars of hemitropic micropolar media in inverse coordinate frames // Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki. 2021. Vol. 25. № 3. P. 457–474. https://doi.org/10.14498/vsgtu1870
  24. Radayev Y.N., Murashkin E.V. Pseudotensor formulation of the mechanics of hemitropic micropolar media // Probl. Prochn. Plastichn. 2020. V. 82. № 4. P. 399–412. https://doi.org/10.32326/1814-9146-2020-82-4-399-412
  25. Murashkin E.V., Radayev Yu.N. On a micropolar theory of growing solids // Journal of Samara State Technical University. Ser. Physical and Mathematical Sciences. 2020. V. 24. № 3. P. 424–444. https://doi.org/10.14498/vsgtu1792
  26. Kovalev V.A., Murashkin E.V., Radayev Yu.N. On the Neuber theory of micropolar elasticity. Apseudotensor formulation // Journal of Samara State Technical University. Ser. Physical and Mathematical Sciences. 2020. V. 24. № 4. P. 752–761. https://doi.org/10.14498/vsgtu1799
  27. Schouten J.A., Tensor Analysis for Physicist. Oxford, Clarendon Press, 434 p.
  28. Synge J.L., Schild A. Tensor calculus. V. 5. Courier Corporation, 1978. 334 p.
  29. Murashkin E.V., Radayev Yu.N. On a ordering of area tensor elements orientations in a micropolar continuum immersed in an external plane space // Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki. 2021. V. 25. № 4. P. 776–786. https://doi.org/10.14498/vsgtu1883
  30. Murashkin E.V., Radaev Y.N. On theory of oriented tensor elements of area for a micropolar continuum immersed in an external plane space // Mechanics of Solids. 2022. V. 57. №. 2. P. 205–213. https://doi.org/10.3103/s0025654422020108
  31. Murashkin E.V., Radayev Y.N. The schouten force stresses in continuum mechanics formulations // Mechanics of Solids. 2023. V. 58. №. 1. P. 153–160. https://doi.org/10.3103/s0025654422700029
  32. Radaev Y.N. Tensors with Constant Components in the Constitutive Equations of Hemitropic Micropolar Solids // Mechanics of Solids. 2023. V. 58. № 5. P. 1517–1527. https://doi.org/10.3103/S0025654423700206
  33. Murashkin E.V., Radayev Y.N. Reducing natural forms of hemitropic energy potentials to conventional ones // Vestn. Chuvash. Gos. Ped. Univ. Im. I. Ya. Yakovleva Ser.: Mekh. Pred. Sost. 2022. № 4 (54). P. 108–115. https://doi.org/10.37972/chgpu.2022.54.4.009
  34. Murashkin E.V., Radayev Y.N. On two base natural forms of asymmetric force and couple stress tensors of potential in mechanics of hemitropic solids // Vestn. Chuvash. Gos. Ped. Univ. Im. I.Ya. Yakovleva Ser.: Mekh. Pred. Sost. 2022. № 3 (53). P. 86–100. https://doi.org/10.37972/chgpu.2022.53.3.010
  35. Murashkin E.V. On the relationship of micropolar constitutive parameters of thermodynamic state potentials // Vestn. Chuvash. Gos. Ped. Univ. Im. I.Ya. Yakovleva Ser.: Mekh. Pred. Sost. 2023. № 1 (55). P. 110–121. https://doi.org/10.37972/chgpu.2023.55.1.012
  36. Jeffreys H. Cartesian Tensors. Cambridge University Press, 1931. 101 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences