Influence of cyclic loading on physical and mechanical properties of thin-film membrane structures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The principle of modification of mechanical properties of thin-film membrane structures of arbitrary shape by non-contact method was proposed, realized and explained for the first time. The idea was tested on an aluminum thin-film membrane formed by magnetron method on a silicon substrate. The external influence was realized by means of cyclic loading in the form of discharge and supply of excess air pressure to the membrane. As a result of repeated impacts, physical properties of materials (grain size and roughness) and mechanical properties (internal mechanical stresses and critical overpressure) are changed. Changing the magnitude of residual mechanical stresses in the membrane material allows the formation of a surface with a desired curvature value. In this work, after cyclic loading with pressure equal to half of the critical pressure, the following effects were revealed: the deflection of the membrane in the absence of external influence increased by more than an order of magnitude, the structure shifted to the plastic type of deformation, the critical rupture pressure decreased by several tens of percent. Application of this methodology allows to create new materials with unique mechanical properties.

About the authors

N. A. Djuzhev

National Research University of Electronic Technology (MIET)

Author for correspondence.
Email: bubbledouble@mail.ru
Russian Federation, Zelenograd, Moscow

E. E. Gusev

National Research University of Electronic Technology (MIET)

Email: bubbledouble@mail.ru
Russian Federation, Zelenograd, Moscow

E. O. Portnova

National Research University of Electronic Technology (MIET)

Email: bubbledouble@mail.ru
Russian Federation, Zelenograd, Moscow

O. V. Novikova

National Research University of Electronic Technology (MIET)

Email: bubbledouble@mail.ru
Russian Federation, Zelenograd, Moscow

References

  1. Zhang G.P, Schwaiger R., Volkert C.A., Kraft O. Effect of film thickness and grain size on fatigue-induced dislocation structures in Cu thin films // Philosophical Magazine Letters. 2003. V. 83. № 8. P. 477–483; https://doi.org/10.1080/0950083031000151383
  2. Calister W.D. Materials Science and Engineering: An Introduction. 7th Edition. New York, 2007.
  3. Wang G., Liaw, P. Fatigue and fracture behavior // Bulk metallic glasses. Springer, Boston, 2008. P. 169–203; https://doi.org/10.1007/978-0-387-48921-6_7
  4. Pan Q. et.al. History-independent cyclic response of nanotwinned metals // Nature. 2017. V. 551. № 7679. P. 214–217; https://doi.org/10.1038/nature24266
  5. Barr C.M., Duong T., Bufford D.C. et al. Autonomous healing of fatigue cracks via cold welding // Nature. 2023; https://doi.org/10.1038/s41586-023-06223-0
  6. Zaslavsky B.V. Short course of resistance of materials. Textbook for aviation specialties of universities. Moscow: Mashinostroenie, 1986. 328 p.
  7. Dyuzhev N.A., Gusev E.E., Makhiboroda M.A. Study of the Mechanical Properties of thin-film membranes made of oxide and silicon nitride // Mech. Solid. 2022. V. 57. № 5. P. 1044–1053.
  8. Perelmuter M.N. Analysis of crack resistance of material joints // Izv. RAS. MTT. 2020. № 4. P. 96–114; https://doi.org/10.31857/S0572329922050063
  9. Babeshko V.A., Babeshko O.M., Evdokimova O.V. Cracks of a new type and models of some nanomaterials // Izv. RAS. MTT. 2020. № 5. P. 13–20.
  10. Novak A.V., Novak V.R., Dedkova A.A., Gusev E.E. Dependence of Mechanical Stresses in Silicon Nitride Films on the Mode of Plasma-Enhanced Chemical Vapor Deposition // Semiconductors. 2018. V. 52. № 15. P. 1953–1957; https://doi.org/10.1134/S1063782618150095
  11. Shikunov S.L., Kurlov V.N. SiC-based composite materials obtained by siliconizing carbon matrices // Technical Physics. 2017. V. 62. №12. P. 1869–1876; https://doi.org/10.1134/S1063784217120222
  12. Bespalov V.A. et al. Review of methods for investigation of mechanical properties of thin films // Model. Syst. Proc. 2022. V. 15. № 3. P. 110–128; https://doi.org/10.12737/2219-0767-2022-15-3-110-128
  13. Kolobov Yu.R. et al. Investigation of the influence of nanosecond laser pulse treatment on microstructure and fatigue resistance of technically pure titanium // Letters in ZhTF. 2022. V. 48. № 2. P. 15–19; https://doi.org/10.21883/PJTF.2022.02.51913.19025
  14. Markov V.F. Technology of thin-film solid-state sensors. Textbook. 2019. 152 p.
  15. Dyuzhev N.A., Gusev E.E., Portnova E.O., Mahiboroda M.A. Study of the effect of radiation exposure on the grain size and mechanical properties of thin-film aluminum // Izv. RAS. MTT. 2024. № 1.
  16. Nabbi R., Wolters J. Investigation of radiation damage in the aluminum structures of the German FRJ-2 research reactor // Int. Atomic Energy Agency (IAEA). 1998
  17. Khan M. et al. A Study of the Structural and Surface Morphology and Photoluminescence of Ni-Doped AlN Thin Films Grown by Co-Sputtering // Nanomaterials. 2022. V. 12. № 21. P. 3919; https://doi.org/10.3390/nano12213919
  18. Lim Y.Y., Chaudhri M., Enomoto Yu. Accurate determination of the mechanical properties of thin aluminum films deposited on sapphire flats using nanoindentations // J. Mater. Res. 1999. V. 14. P. 2314–2327; https://doi.org/10.1557/JMR.1999.0308
  19. Quek S.S. et. al. The inverse hall–petch relation in nanocrystalline metals: A discrete dislocation dynamics analysis // J. Mech. Phys. Solids. 2016. V. 88. P. 252–266; https://doi.org/10.1016/j.jmps.2015.12.012
  20. Akiniwa Y., Suzuki T., Tanaka K. Evaluation of deformation behavior in Cu thin film under tensile and fatigue loading by X-ray method // Mater. Sci. Forum. 2006. V. 524–525. P 807–812; 10.4028/www.scientific.net/MSF.524-525.807' target='_blank'>https://doi.org/doi: 10.4028/www.scientific.net/MSF.524-525.807
  21. Read D.T., Volinsky A.A. Measurements for Mechanical Reliability of Thin Films // NATO Science for Peace and Security Series C: Environmental Security. 2009. P. 337–358; https://doi.org/10.1007/978-90-481-2792-4_16
  22. Sinclair G.M., Dolan T.J. Effect of stress amplitude on statistical variability in fatigue life of 75S-T6 aluminum alloy // Trans ASME. 1953. V. 75. P. 867–870; https://doi.org/10.1115/1.4015460
  23. Puchicabrera E. et.al. Fatigue behavior of AA7075-T6 aluminum alloy coated with ZrN by PVD // Int. J. Fatigue. 2008. V. 30. № 7. P. 1220–1230; https://doi.org/10.1016/j.ijfatigue.2007.09.001
  24. Yang H.H. et al. Synergistic effect of environmental media and stress on the fatigue fracture behaviour of aluminium alloys // Fatigue Fract. Eng. Mater. Struct. 2016. V. 39. P. 1309–1316; https://doi.org/10.1111/ffe.12457
  25. Ramamurty Raju P., Satyanarayana B., Ramji K. Sample Size Determination for Development of S-N Curve of A356.2-T6 Aluminum Alloy // SDHM. 2008. V. 4. № 3. P. 161–171; https://doi.org/10.3970/sdhm.2008.004.161

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences