Non-classical theories of beams, plates and shells (review)
- Authors: Vasiliev V.V.1
-
Affiliations:
- Central Research Institute of Special Engineering
- Issue: No 6 (2024)
- Pages: 3-26
- Section: Articles
- URL: https://ruspoj.com/1026-3519/article/view/682268
- DOI: https://doi.org/10.31857/S1026351924060013
- EDN: https://elibrary.ru/TZLMMW
- ID: 682268
Cite item
Abstract
The article is an analytical review and is devoted to the problem of constructing non-classical theories of beams, plates and shells, the relevance of which is associated with the emergence of new structural materials with properties that do not fully correspond to the hypotheses adopted in the construction of classical theories. The presentation is based on the analysis of the problem of lowering the order of equations of elasticity theory for thin-walled structural elements and mathematical and physical methods used for this purpose. The main focus is on the correctness and energy consistency of these methods. The presentation is illustrated with examples of specific theories.
Keywords
Full Text

About the authors
V. V. Vasiliev
Central Research Institute of Special Engineering
Author for correspondence.
Email: vvvas@dol.ru
Russian Federation, Khotkovo
References
- Galinsh A.K. Calculation of plates and shells according to refined theories // Studies on the theory of plates about shells. Kazan: Publishing House of the Kazan University, 1967. № 5. P. 66–92; 1970. № 6–7. P. 23–64.
- Pelekh B.L. Some questions of the theory and calculation of anisotropic shells and plates with low shear stiffness // Mechanics of polymers. 1970. № 4. P. 693–714.
- Dudchenko A.A., Lurie S.A., Obraztsov I.F. Anisotropic multilayer plates and shells // Mechanics of a deformable solid. 1983. V. 15. P. 3–68.
- Ambartsumyan S.A. Nontraditional theories of shells and plates // Appl. Mech. Rev. 2002. V. 55. № 5. P. 35–44. https://doi.org/10.1115/1.1495002
- Annin B.D., Volchkov Yu.M. Nonclassical models of the theory of plates and shells // PMTF. 2016. Vol. 56. No. 5. P. 5–14. http://doi.org/10.15372/PMTF20160501
- Carrera E., Elishakov I., Petrolo M. Who needs refined structural theories? // Compos. Struct. 2021. V. 264. № 2. P. 1–6. http://doi.org/10.1016/j.compstruct.2021.113671
- Jemielita G. On the winding paths of the theory of plates // J. of Theoretical and Applied Mechanics. 1993. V. 31. № 2. P. 317–327.
- Vasiliev V.V. The theory of thin elastic plates – the history and current state of the problem // Bulletin of RAS. Solid Body Mechanics. 2024. № 2. P. 3–39.
- Kilchevsky N.A. Fundamentals of analytical mechanics of shells. Kiev: Ed. Academy of Sciences of the Ukrainian SSR, 1963. 255 p.
- Rapoport I.M. Vibrations of an elastic shell partially filled with liquid. Moscow: Mashinostroenie, 1967. 360 p.
- Vekua I.N. Some general methods for constructing various versions of shell theory. Moscow: Nauka, 1982. 287 p.
- Vasiliev V.V., Lurie S.A. On the problem of constructing non-classical plate theories // Bulletin of RAS. MT. 1990. № 2. P. 158–167.
- Vasiliev V.V., Lurie S.A. On the refined theories of beams, plates and shells // J. Compos.Mater. 1992. V. 26. № 4. P. 546–557.
- Zhilin P.A. On the theories of Poisson and Kirchhoff plates from the standpoint of modern plate theory // Bulletin of RAS. Solid Body Mechanics. 1992. № 3. P. 48–64.
- Timoshenko S.P. On the correction for shear of the differential equation for transverse vibrations of prismatic bars // Phil. Mag. and J. of Science. 1921. Ser. 6. V. 41. № 245. P. 744–746. https://doi.org/10.1080/14786442108636264
- Timoshenko S.P. Course of elasticity theory. Part 2. Rods and plates. Petrograd: Type. A.E. Collins, 1916. 424 p.
- Elishakov I. Handbook on Timoshenko-Ehrenfest beam and Uflyand-Mindlin plate theories. World Scientific Publ. Co. 2020. 769 p.
- Hencky H. Uber die Berucksichtigung der Schubverzerrung in ebenen Platten // Ing. Arch. 1947. V. 16. P. 72–76.
- Bolle L. Contribution au problem lineaire de flexion d’une plaque elastique // Bull. Tech. Suisse Romander. 1947. V. 11. 32 p.
- Reissner E. On the theory of bending of elastic plates // J. Math. Phys. 1944. V. 23. № 4. P. 184–191.
- Naghdy P.M. On the theory of thin elastic shells // Quart. J. Appl. Math. 1957. V. 14. № 4. P. 369–380.
- Korolev V.I. Layered anisotropic plates and shells made of reinforced plastics. Moscow: Mashinostroenie, 1965. 272 p.
- Bert W.C. Structural theory for laminated anisotropic elastic shells // J. Compos. Mater. 1967. V. 1. P. 414–423.
- Pelekh B.L. Theory of shells with finite shear stiffness. Kiev: Nauk. Dumka, 1973. 248 p.
- Uflyand Ya.S. Wave propagation during transverse vibrations of rods and plates // PMM. 1948. Vol. 12. № 3. P. 287–300.
- Mindlin R.D. Influence of rotatory inertia and shear on flexural motion of isotropic elastic plates // J. Appl. Mech. 1951. V. 18. № 1. P. 31–38. https://doi.org/10.1115/1.4010217
- Vlasov B.F. On the equations of the theory of bending plates // Bulletin of USSR Academy of Sciences. Department of Technical Sciences 1957. № 12. P. 57–60.
- Goldenweiser A.L. On the theory of bending of Reissner plates // Bulleting of USSR Academy of Sciences. Department of Technical Sciences 1958. № 4. P. 102–109.
- Riocco E., Reddy J.N. Analytical solutions of Reddy, Timoshenko and Bernulli beam models: A comparative analysis // Eur. J. Mech. A/Solids. 2023. V. 99. P. 1–14. https://doi.org/10.1016/j.euromechsol.2023.104953
- Groh R.M.J., Weaver P.M. Static inconsistences in certain higher-order shear deformation theories for beams, plates and shells // Compos. Struct. 2015. V. 120. P. 231–245. https://doi.org/10.1016/j.compstruct.2014.10.006
- Wang C.M., Reddy J.N., Lee K.N. Shear deformable beams and plates. Elsevier, 2000. 296 p.
- Reddy J.N. Mechanics of laminated composite plates and shells. Theory and analysis. Boca Raton: CRC Press, 2004. 831 p.
- Ambartsumyan S.A. On the theory of bending of anisotropic plates // Bulletin of USSR Academy OF Sciences. DATED 1958. № 5. P. 69–77.
- Ambartsumyan S.A. Theory of anisotropic plates. Moscow: Nauka, 1967. 266 p.
- Ambartsumyan S.A. Theory of anisotropic plates. Technomic, 1970. 255 p.
- Ambartsumyan S.A. General theory of anisotropic shells. Moscow: Nauka, 1974. 447 p.
- Ambartsumyan S.A. Theory of anisotropic plates. Moscow: Nauka, 1987. 360 p.
- Kromm A. Verallgemeinnerte Theorie der Plattenstatik // Ing. Arciv. 1953. V. 21. P. 266–286.
- Kromm A. Uber die Randquerrrafte bei gesttutzten Platten // Z. angew. Marh. Mech. 1955. V. 36. № 6–7. P. 231–242.
- Vasiliev V.V. On the Kirchhoff and Thomson-Theta transformations in the classical theory of plates // Bulletin of RAS. Solid Body Mechanics. 2012. № 5. P. 98–107.
- Vasiliev V.V., Lurie S.A. A variant of the refined theory of bending beams made of laminated plastics // Mechanics of polymers. 1972. № 4. P. 674–681.
- Vasiliev V.V., Lurie S.A. A planar problem of elasticity theory for an orthotropic cantilever strip // Bulletin of USSR Academy OF Sciences. MT. 1984. № 5. P. 125–135.
- Vasiliev V.V., Lurie S.A. Differential equations and the problem of singularity of solutions in applied mechanics and mathematics // PMTF. 2023. Vol. 64. № 1. P. 114–127. https://doi.org/10.15372/PMTF202215157
- Vasiliev V.V., Lurie S.A. A planar problem of elasticity theory for a cantilever strip with a microstructure // Composites and nanostructures. 2017. Vol. 9. № 2. P. 63–76.
- Boal J.L., Reissner E. Three-dimensional theory of elastic plates with transverse inextensibility // J. Math. Phys. 1960. V. 39. № 1–4. P. 161–181. https://doi.org/10.1002/sapm1960391161
- Vasiliev V.V. Investigation of the edge effect in a cylindrical fiberglass shell // Engineering Journal. 1965. V. 5. № 1. P. 143–154.
- Goldenweiser A.L., Kaplunov Yu.D., Nolde E.V. Asymptotic analysis and refinement of the theory of plates and shells of the Timoshenko-Reissner type // Bulleting of USSR Academy of Sciences. 1990. № 6. P. 124–138.
- Goldenweiser A.L. On approximate methods for calculating thin elastic shells and plates // Bulletin of RAS. Solid Body Mechanics. 1997. № 3. P. 134–148.
- Vasiliev V.V. On the asymptotic method of substantiating the theory of plates // Bulletin of RAS. Solid Body Mechanics. 1997. № 3. P. 150–155.
- Goldenweiser A.L. Comments on the article by V.V. Vasilyeva “On the asymptotic method of substantiating the theory of plates” // Bulletin of RAS. Solid Body Mechanics. 1997. № 4. P. 150–158.
- Vasiliev V.V. Theory of composite shells. In: Mechanics of Composites, Moscow: Mir. Publ, 1982. P. 223–251.
- Vasiliev V.V., Nazarenko V.G. A variant of the theory of thick multilayer cylindrical shells // Mechanics of polymers. 1974. № 6. P. 1071–1078.
- Ulyashina A.N. Stress-strain state of orthotropic layered plates // Bulletin of USSR Academy OF Sciences. MT. 1979. № 1. P. 145–154.
- Ulyashina A.N. Equations of the technical theory of orthotropic shells taking into account shear and normal transverse deformations // Mechanics of polymers. 1977. № 2. P. 270–276.
- Vijayakumar K. Poisson-Kirchhoff paradox in flexure of plates // AIAA J. 1988. V. 26. № 2. P. 247–249.
- Vlasov V.Z. Method of initial functions in problems of elasticity theory // Bulletin of USSR Academy of Sciences. Department of Technical Sciences 1955. № 7. P. 49–69.
- Vasiliev V.V. Mechanics of structures made of composite materials. Moscow: Mashinostroenie, 1988. 270 p.
- Grigolyuk E.I., Kogan F.A. Current state of the theory of multilayer shells // Applied Mechanics. 1972. V. 8. № 6. P. 3–17.
- Grigolyuk E.I., Kulikov G.M. Development of a general direction in the theory of multilayer shells // Mechanics of composite materials. 1988. № 2. P. 287–298.
- Carrera E. Historical review of Zig-Zag theories for multilayered plates and shells // Appl. Mech. Rev. 2003. V. 56. № 3. P. 287–308. https://doi.org/10.1115/1.1557614
- Bolotin V.V. Theory of layered plates // Bulletin of USSR Academy of Sciences. Department of Technical Sciences. Mechanics and mechanical engineering. 1963. № 3. P. 65–72.
- Bolotin V.V. On the bending of plates consisting of a large number of layers // Bulletin of USSR Academy of Sciences. Department of Technical Sciences. Mechanics and mechanical engineering. 1964. № 1. P. 61–66.
- Bolotin V.V., Novichok Yu.N. Mechanics of multilayer structures. Moscow: Mashinostroenie, 1980. 375 p.
- Elpatyevsky A.N., Vasiliev V.V. Investigation of the stress state of a cylindrical shell wound from fiberglass // Engineering Journal. 1965. V. 5. № 1. P. 129–142.
- Grigolyuk E.I., Chulkov P.P. Theory of viscoelastic multilayer shells with rigid filler at finite deflections // PMTF. 1964. № 5. P. 109–117.
- Vasiliev V.V. Applied theory of composite shells // Mechanics of composite materials. 1985. № 5. P. 843–852.
- Vasiliev V.V. Some problems of shell theory related to the features of modern structural materials // Bulletin of USSR Academy of Sciences. Department of Technical Sciences. Solid Body Mechanics. 1987. № 5. P. 178–188.
Supplementary files
