Description of polymer gel properties in framework of generalized Mooney-Rivlin model

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

. A polymer gel is considered as a mixture consisting of a highly elastic elastic material and a liquid (solvent) dissolved in it. Based on the generalized Mooney-Rivlin model, an expression of free energy is proposed that describes the deformation behavior and thermodynamic properties of polymer gels. In this model, it is assumed that the Mooney-Rivlin “constants” depend on the concentration of the liquid dissolved in the polymer. From this expression, the defining relations for the stress tensor, the chemical potential of the solvent and the osmotic stress tensor are obtained. On their basis, an experimental study of the deformation properties of mesh elastomers swollen in a solvent of various chemical nature has been performed. In particular, the dependence of the elastic properties of elastomers on the solvent concentration has been studied and the parameters describing this dependence have been determined.

全文:

受限制的访问

作者简介

Е. Denisyuk

Institute of Continuous Media Mechanics of the Ural Branch of Russian Academy of Science

编辑信件的主要联系方式.
Email: denisyuk@icmm.ru
俄罗斯联邦, Perm

参考

  1. Bashir S. et al. Fundamental concepts of hydrogels: synthesis, properties, and their applications // Polymersю 2020. V. 12. P. 2702. https://doi.org/10.3390/polym12112702
  2. Valuev L.I., Valueva T.A., Valuev I.L., Plate N.A. Polymer systems for controlled release of biologically active compounds // Usp. Biol. Khim. 2003. V. 43. P. 307–328.
  3. Chyzy A., Tomczykowa M., Plonska-Brzezinska M.E. Hydrogels as potential nano-, micro- and macro-scale systems for controlled drug delivery // Materials. 2020. V. 13. № 1. P. 188. https://doi.org/10.3390/ma13010188
  4. Deligkaris K., Tadele T.S., Olthuis W., Berg A. Hydrogel-based devices for biomedical applications // Sensor Actuat. B. 2010. V. 147. № 2. P. 765–774. https://doi.org/10.1016/j.snb.2010.03.083
  5. Ding M. et al. Multifunctional soft machines based on stimuli-responsive hydrogels: from freestanding hydrogels to smart integrated systems // Mater. Today Adv. 2020. V. 8. 100088. https://doi.org/10.1016/j.mtadv.2020.100088
  6. Hoare T.R., Kohane D.S. Hydrogels in drug delivery: Progress and challenges // Polymer. 2008. V. 49. № 8. P. 1993–2007. https://doi.org/10.1016/j.polymer.2008.01.027
  7. Kopecek J. Hydrogels: from soft contact lenses and implants to self-assembled nanomaterials // J. Polym. Sci. A Polym. Chem. 2009. V. 47. P. 5929–5946. https://doi.org/10.1002/pola.23607
  8. Lee K.Y., Mooney D.J. Hydrogels for tissue engineering // Chem. Rev. 2001. V. 101. № 7. P. 1869–1880. https://doi.org/10.1021/cr000108x
  9. Peppas N.A., Hilt J.Z., Khademhosseini A., Langer R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology // Adv. Mater. 2006. V. 18. № 11. P. 1345–1360. https://doi.org/10.1002/adma.200501612
  10. Flory P.J., Rehner J. Statistical mechanics of cross-linked polymer networks // J. Chem. Phys. 1943. V. 11. P. 512–526. https://doi.org/10.1063/1.1723791
  11. Flory P.J. Molecular theory of rubber elasticity // Polymer. 1979. V. 20. № 11. P. 1317–1320. https://doi.org/10.1016/0032-3861(79)90268-4
  12. Flory P.J., Erman B. Theory of elasticity of polymer networks // Macromolecules. 1982. V. 15. № 3. P. 800–806. https://doi.org/10.1021/ma00231a022
  13. Edwards S.F., Vilgis T.A. The tube model theory of rubber elasticity // Rep. Prog. Phys. 1988. V. 51. P. 243–297. https://doi.org/10.1088/0034-4885/51/2/003
  14. Han W.H., Horkay F., McKenna G.B. Mechanical and swelling behaviors of rubber: a comparison of some molecular models with experiment // Math. Mech. Solids. 1999. V. 4. P. 139–167. https://doi.org/10.1177/108128659900400
  15. Arruda E.M., Boyce M.C. Constitutive models of rubber elasticity: a review // Rubber Chem. Technol. 2000. V. 72. P. 504–523. https://doi.org/10.5254/1.3547602
  16. Boyce M.C., Arruda E.M. Swelling and mechanical stretching of elastomeric materials // Math. Mech. Solids. 2001. V. 6. P. 641–659. https://doi.org/10.1177/108128650100600605
  17. Dal H., Acikgoz K., Badienia Y. On the performance of isotropic hyperelastic constitutive models for rubber-like materials: a state of the art review // Appl. Mech. Rev. 2021. V. 73. 020802. https://doi.org/10.1115/1.4050978
  18. Anssari-Benam A. Assessment large isotropic elastic deformations: on a comprehensive model to correlate the theory and experiments for incompressible rubber-like materials // J. Elast. 2023. V. 153. P. 219–244. https://doi.org/10.1007/s10659-022-09982-5
  19. Mooney M. A theory of large elastic deformation // J. Appl. Phys. 1940. V. 11. P. 582–592. https://doi.org/10.1063/1.1712836
  20. Flory P.J., Tatara Y. The elastic free energy and the elastic equation of state: elongation and swelling of polydimethylsiloxane networks // J. Polym. Sci. 1975. V. 13. P. 683–702. https://doi.org/10.1002/pol.1975.180130403
  21. Denisyuk E.Ya. Mechanics and thermodynamics of fluid-saturated highly elastic materials // Mech. Solids. 2010. V. 45. № 1. P. 94–110. https://doi.org/10.3103/S0025654410010139
  22. Denisyuk E.Ya. Problems of mechanics of polymer gels with unilateral constraints // Mech. Solids. 2022. V. 57. № 2. P. 292–306. https://doi.org/10.3103/S0025654422020054
  23. Denisyuk E.Ya. Equilibrium of polymer gels in the field of body forces // Mech. Solids. 2022. V. 57. № 4. P. 683–700. https://doi.org/10.3103/S0025654422040070
  24. Lurie A.I. Nonlinear theory of elasticity. M.: Nauka, 1980 [in Russian].
  25. Denisyuk E.Ya., Tereshatov V.V. Theory of the mechanodiffusion transfer of multicomponent liquids in cross-linked elastomers // J. Appl. Mech. Tech. Phys. 1997. V. 38. № 6. P. 913–927. https://doi.org/10.1007/BF02467957
  26. Denisyuk E.Ya., Tereshatov V.V. A nonlinear theory of the process of elastomer swelling in low-molecular-mass liquids // Polymer Sci. Ser. A. 2000. V. 42. № 1. P. 56–67.
  27. Prigogine I., Defay R. Chemical thermodynamics. NY: Longmans Green and Co, 1954.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Experimental curves of uniaxial tension of the PBU-1 elastomer at different concentrations of DBS, presented in Mooney-Rivlin coordinates: 1 – φ2 = 1; 2 – φ2 = 0.682; 3 – φ2 = 0.469; 4 – φ2 = 0.364; 5 – φ2 = 0.277; 6 – φ2 = 0.204; 7 – φ2 = 0.126.

下载 (15KB)
3. Fig. 2. Experimental dependence of the ratio ψ2/ψ1 on the volume fraction of polymer φ2 for the PBU-1 elastomer containing DBS, presented in logarithmic coordinates.

下载 (6KB)
4. Fig. 3. Experimental dependence of the thermodynamically equilibrium elastic response of the PBU-4 elastomer under uniaxial tension in the DBS. The solid line is calculated using equations (5.6)–(5.9) with the constants presented in the table. The value of P is measured in MPa.

下载 (7KB)
5. Fig. 4. Experimental deformation dependence of the equilibrium degree of swelling of the PBU-4 elastomer in DBS under uniaxial tension conditions. The solid line is calculated using equation (5.7) with the constants presented in the table.

下载 (6KB)

版权所有 © Russian Academy of Sciences, 2024