Determination of the spectrum of frequencies and vibrations of a rectangular plate, mobily employed around the edge, in different environments
- Authors: Sabitov K.B.1, Khakimov A.G.1
-
Affiliations:
- Mavlyutov Institute of Mechanics
- Issue: No 6 (2024)
- Pages: 155-176
- Section: Articles
- URL: https://ruspoj.com/1026-3519/article/view/682277
- DOI: https://doi.org/10.31857/S1026351924060093
- EDN: https://elibrary.ru/TYVVFG
- ID: 682277
Cite item
Abstract
The spectrum of frequencies and shapes of bending vibrations of a rectangular plate in contact with a liquid or gas are determined. A derivation of the expression for the distributed transverse load on a plate movably embedded along the contour is given. The surfaces of the plate are in contact with media of different densities and pressures. The medium can be compressible during surface deformation and incompressible. The influence on the bending of the interaction of average pressure and changes in the curvature of the middle surface, as well as the added mass of the gaseous medium, is determined.
Full Text

About the authors
K. B. Sabitov
Mavlyutov Institute of Mechanics
Author for correspondence.
Email: sabitov_fmf@mail.ru
Russian Federation, Ufa
A. G. Khakimov
Mavlyutov Institute of Mechanics
Email: hakimov@anrb.ru
Russian Federation, Ufa
References
- Gontkevich V.S. Natural oscillations of shells in a liquid. Kyiv: Naukova Dumka, 1964. 102 p. (in Russian).
- Ilgamov M.A. Oscillations of elastic shells containing liquid and gas. M.: Nauka, 1969. 180 p. (in Russian).
- Popov A.L., Chernyshev G.N. Mechanics of sound emission from plates and shells. M.: Fizmatlit. 1994. 208 p. (in Russian).
- Nesterov S.V. Flexural vibration of a square plate clamped along its contour // Mech. Solids. 2011. V. 46. № 6. P. 946–951. https://doi.org/10.3103/S0025654411060148
- Denisov S.L., Kopyev V.F., Medvedsky A.L., Ostrikov N.N. Investigation of the problems of durability of orthotropic polygonal plates under broadband acoustic exposure taking into account the effects of radiation // Mech. Solids. 2020. V. 55. № 5. P. 716–727. https://doi.org/10.3103/S0025654420300019
- O’Connell A D., Hofheinz M., Ansmann M., Bialczak R.C., Lenander M., Lucero E. et al. Quantum ground state and single-phonon control of a mechanical resonator // Nature. 2010. № 464. P. 697–703. https://doi.org/10.1038/nature08967
- Burg T.P., Godin M., Knudsen S.M., Shen W., Carlson G., Foster J.S. et al. Weighing of biomolecules, single cells and single nanoparticles in fluid // Nature. 2007. № 446. P. 1066–1069. https://doi.org/10.1038/nature05741
- Husale S., Persson H.H.J., Sahin O. DNA nanomechanics allows direct digital detection of complementary DNA and microRNA targets // Nature. 2009. № 462. P. 1075–1078. https://doi.org/10.1038/nature08626
- Raman A., Melcher J., Tung R. Cantilever dynamics in atomic force microscopy // Nano Today. 2008. V. 3. № 1–2. P. 20–27. https://doi.org/10.1016/S1748-0132(08)70012-4
- Eom K., Park H.S., Yoon D.S., Kwon T. Nanomechanical resonators and their applications in biological/chemical detection: Nanomechanics principles // Physics Reports–Review Section of Physics Letters. 2011. V. 503. № 4–5. P. 115–163. https://doi.org/10.1016/j.physrep.2011.03.002
- Stassi S., Marini M., Allione M., Lopatin S., Marson D., Laurini E. et al. Nanomechanical DNA resonators for sensing and structural analysis of DNA-ligand complexes // Nature Communications. 2019. № 10. P. 1–10. https://doi.org/10.1038/s41467-019-09612-0
- Jaber N., Hafiz M.A.A., Kazmi S.N.R., Hasan M.H., Alsaleem F., Ilyas S., Younis M.I. Efficient excitation of micro/nano resonators and their higher order modes // Sci. Rep. 2019. V. 9. P. 319. https://doi.org/10.1038/s41598-018-36482-1
- Soltan Rezaee M., Bodaghi M. Simulation of an electrically actuated cantilever as a novel biosensor // Sci. Rep. 2020. V. 10. P. 3385. https://doi.org/10.1038/s41598-020-60296-9
- Tavakolian F., Farrokhabadi A., SoltanRezaee M., Rahmanian S. Dynamic pull-in of thermal cantilever nanoswitches subject to dispersion and axial forces using nonlocal elasticity theory // Microsystem Technol. 2019. V. 25. № 3. P. 19–30. https://doi.org/10.1007/s00542-018-3926-y
- Ilgamov M.A. Influence of the ambient pressure on thin plate and film bending // Doklady physics. 2017. V. 62. № 10. P. 461–464. https://doi.org/10.1134/S1028335817100020
- Ilgamov M.A. The influence of surface effects on bending and vibrations of nanofilms // Physics of the Solid State. 2019. V. 61. № 10. P. 1779–1784. https://doi.org/10.1134/S1063783419100172
- Ilgamov M.A., Khakimov A.G. Influence of pressure on the frequency spectrum of micro and nanoresonators on hinged supports // J. Appl. Comp. Mech. 2021. V. 7. № 2. P. 977–983. https://doi.org/10.22055/JACM.2021.36470.2848
- Ilgamov M.A., Khakimov A.G. Influence of ambient pressure on the lowest oscillation frequency of a plate // Mech. Solids. 2022. V. 57. № 3. Р. 524–531. https://doi.org/10.3103/S0025654422030141
- Paimuship V.N. Gazizullin R.K. Refined analytical solutions of the coupled problems on free and forced vibrations of a rectangular composite plate surrounded by acoustic media // Uchen. zap. Kazan, Univ. Ser. Phys.-mathematical sciences. 2020. V. 162. № 2. P. 160–179. https://doi.org/10.26907/2541-7746.2020.2.160-179
- Morozov N.A., Grebenyuk G.I., Maksak V.I., Gavrilov A.F. Free vibrations of rectangular plates // J. Constr. Arch. 2023. V. 25. № 3. P. 96–111 (in Russian). https://doi.org/10.31675/1607-1859-2023-25-3-96-111
- Sabitov K.B. Initial-boundary value problems for equation of oscillations of a rectangular plate // Russian Mathematics. 2021. V. 65. № 10. P. 52–62. https://doi.org/10.3103/S1066369X21100054
- Sabitov K.B. Vibrations of plate with boundary “hinged attachment” conditions // J. Samara State Tech. University, Ser. Phys. Math. Sci. 2022. V. 26. № 4. P. 650–671 (In Russian). https://doi.org/10.14498/vsgtu1950
- Sabitov K.B. Plate oscillations with mixed boundary conditions // Russian Mathematics (Iz. VUZ). 2023. № 3. P. 63–77 (In Russian). https://doi.org/10.26907/0021-3446-2023-3-63-77
- Sabitov K.B. Direct and inverse problems for the equation of oscillations of a rectangular plate to find the source // J. Comp. Math. Math. Phys. 2023. V. 63. № 4. P. 614–628 (In Russian). https://doi.org/10.31857/S0044466923040142
- Timoshenko S.P., Voinovsky–Krieger S. Plates and shells. M.: Nauka, 1966. 636 p. (In Russian).
Supplementary files
