Determination of the spectrum of frequencies and vibrations of a rectangular plate, mobily employed around the edge, in different environments

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The spectrum of frequencies and shapes of bending vibrations of a rectangular plate in contact with a liquid or gas are determined. A derivation of the expression for the distributed transverse load on a plate movably embedded along the contour is given. The surfaces of the plate are in contact with media of different densities and pressures. The medium can be compressible during surface deformation and incompressible. The influence on the bending of the interaction of average pressure and changes in the curvature of the middle surface, as well as the added mass of the gaseous medium, is determined.

Full Text

Restricted Access

About the authors

K. B. Sabitov

Mavlyutov Institute of Mechanics

Author for correspondence.
Email: sabitov_fmf@mail.ru
Russian Federation, Ufa

A. G. Khakimov

Mavlyutov Institute of Mechanics

Email: hakimov@anrb.ru
Russian Federation, Ufa

References

  1. Gontkevich V.S. Natural oscillations of shells in a liquid. Kyiv: Naukova Dumka, 1964. 102 p. (in Russian).
  2. Ilgamov M.A. Oscillations of elastic shells containing liquid and gas. M.: Nauka, 1969. 180 p. (in Russian).
  3. Popov A.L., Chernyshev G.N. Mechanics of sound emission from plates and shells. M.: Fizmatlit. 1994. 208 p. (in Russian).
  4. Nesterov S.V. Flexural vibration of a square plate clamped along its contour // Mech. Solids. 2011. V. 46. № 6. P. 946–951. https://doi.org/10.3103/S0025654411060148
  5. Denisov S.L., Kopyev V.F., Medvedsky A.L., Ostrikov N.N. Investigation of the problems of durability of orthotropic polygonal plates under broadband acoustic exposure taking into account the effects of radiation // Mech. Solids. 2020. V. 55. № 5. P. 716–727. https://doi.org/10.3103/S0025654420300019
  6. O’Connell A D., Hofheinz M., Ansmann M., Bialczak R.C., Lenander M., Lucero E. et al. Quantum ground state and single-phonon control of a mechanical resonator // Nature. 2010. № 464. P. 697–703. https://doi.org/10.1038/nature08967
  7. Burg T.P., Godin M., Knudsen S.M., Shen W., Carlson G., Foster J.S. et al. Weighing of biomolecules, single cells and single nanoparticles in fluid // Nature. 2007. № 446. P. 1066–1069. https://doi.org/10.1038/nature05741
  8. Husale S., Persson H.H.J., Sahin O. DNA nanomechanics allows direct digital detection of complementary DNA and microRNA targets // Nature. 2009. № 462. P. 1075–1078. https://doi.org/10.1038/nature08626
  9. Raman A., Melcher J., Tung R. Cantilever dynamics in atomic force microscopy // Nano Today. 2008. V. 3. № 1–2. P. 20–27. https://doi.org/10.1016/S1748-0132(08)70012-4
  10. Eom K., Park H.S., Yoon D.S., Kwon T. Nanomechanical resonators and their applications in biological/chemical detection: Nanomechanics principles // Physics Reports–Review Section of Physics Letters. 2011. V. 503. № 4–5. P. 115–163. https://doi.org/10.1016/j.physrep.2011.03.002
  11. Stassi S., Marini M., Allione M., Lopatin S., Marson D., Laurini E. et al. Nanomechanical DNA resonators for sensing and structural analysis of DNA-ligand complexes // Nature Communications. 2019. № 10. P. 1–10. https://doi.org/10.1038/s41467-019-09612-0
  12. Jaber N., Hafiz M.A.A., Kazmi S.N.R., Hasan M.H., Alsaleem F., Ilyas S., Younis M.I. Efficient excitation of micro/nano resonators and their higher order modes // Sci. Rep. 2019. V. 9. P. 319. https://doi.org/10.1038/s41598-018-36482-1
  13. Soltan Rezaee M., Bodaghi M. Simulation of an electrically actuated cantilever as a novel biosensor // Sci. Rep. 2020. V. 10. P. 3385. https://doi.org/10.1038/s41598-020-60296-9
  14. Tavakolian F., Farrokhabadi A., SoltanRezaee M., Rahmanian S. Dynamic pull-in of thermal cantilever nanoswitches subject to dispersion and axial forces using nonlocal elasticity theory // Microsystem Technol. 2019. V. 25. № 3. P. 19–30. https://doi.org/10.1007/s00542-018-3926-y
  15. Ilgamov M.A. Influence of the ambient pressure on thin plate and film bending // Doklady physics. 2017. V. 62. № 10. P. 461–464. https://doi.org/10.1134/S1028335817100020
  16. Ilgamov M.A. The influence of surface effects on bending and vibrations of nanofilms // Physics of the Solid State. 2019. V. 61. № 10. P. 1779–1784. https://doi.org/10.1134/S1063783419100172
  17. Ilgamov M.A., Khakimov A.G. Influence of pressure on the frequency spectrum of micro and nanoresonators on hinged supports // J. Appl. Comp. Mech. 2021. V. 7. № 2. P. 977–983. https://doi.org/10.22055/JACM.2021.36470.2848
  18. Ilgamov M.A., Khakimov A.G. Influence of ambient pressure on the lowest oscillation frequency of a plate // Mech. Solids. 2022. V. 57. № 3. Р. 524–531. https://doi.org/10.3103/S0025654422030141
  19. Paimuship V.N. Gazizullin R.K. Refined analytical solutions of the coupled problems on free and forced vibrations of a rectangular composite plate surrounded by acoustic media // Uchen. zap. Kazan, Univ. Ser. Phys.-mathematical sciences. 2020. V. 162. № 2. P. 160–179. https://doi.org/10.26907/2541-7746.2020.2.160-179
  20. Morozov N.A., Grebenyuk G.I., Maksak V.I., Gavrilov A.F. Free vibrations of rectangular plates // J. Constr. Arch. 2023. V. 25. № 3. P. 96–111 (in Russian). https://doi.org/10.31675/1607-1859-2023-25-3-96-111
  21. Sabitov K.B. Initial-boundary value problems for equation of oscillations of a rectangular plate // Russian Mathematics. 2021. V. 65. № 10. P. 52–62. https://doi.org/10.3103/S1066369X21100054
  22. Sabitov K.B. Vibrations of plate with boundary “hinged attachment” conditions // J. Samara State Tech. University, Ser. Phys. Math. Sci. 2022. V. 26. № 4. P. 650–671 (In Russian). https://doi.org/10.14498/vsgtu1950
  23. Sabitov K.B. Plate oscillations with mixed boundary conditions // Russian Mathematics (Iz. VUZ). 2023. № 3. P. 63–77 (In Russian). https://doi.org/10.26907/0021-3446-2023-3-63-77
  24. Sabitov K.B. Direct and inverse problems for the equation of oscillations of a rectangular plate to find the source // J. Comp. Math. Math. Phys. 2023. V. 63. № 4. P. 614–628 (In Russian). https://doi.org/10.31857/S0044466923040142
  25. Timoshenko S.P., Voinovsky–Krieger S. Plates and shells. M.: Nauka, 1966. 636 p. (In Russian).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Elements dx and dy of the middle surface of a curved plate.

Download (13KB)
3. Fig. 2. Dependence of the first frequency of bending vibrations of the plate f11 (Hz) on the pressure p2 (MPa) for the pressure p1 = 0.5 MPa: (a) for different gases: = 0.1785 (helium), 1.2928 (air), 1.9768 (carbon dioxide) kg/m3 (dotted, dashed, solid lines, respectively); (b) according to the formulas for incompressible (2.25) and compressible (3.17) liquids for carbon dioxide = 1.9768 kg/m3 (solid, dotted lines, respectively).

Download (20KB)
4. Fig. 3. Dependence of the second frequency of bending vibrations of the plate f22 (Hz) on the pressure p2 (MPa) for the pressure p1 = 0.5 MPa: (a) for different gases: = 0.1785 (helium), 1.2928 (air), 1.9768 (carbon dioxide) kg/m3 (dotted, dashed, solid lines, respectively); (b) according to the formulas for incompressible (2.25) and compressible (3.17) liquids for carbon dioxide = 1.9768 kg/m3 (solid, dotted lines, respectively).

Download (22KB)

Copyright (c) 2024 Russian Academy of Sciences