Overexpression of Cerebral Dopamine Neurotrophic Factor (CDNF) in the Hippocampus Enhances Social Interest in C57BL/6J Mice

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Cerebral dopamine neurotrophic factor (CDNF) is a promising therapeutic agent in the context of Parkinson’s disease (PD). There is evidence that the neuroprotective properties of CDNF are associated with its regulatory effect on the unfolded protein response (UPR). Behavioral and psychological symptoms are an integral part of PD and other neurodegenerative diseases. However, information on the effect of CDNF on non-motor behavior is very scarce. Therefore, the aim of this study was to investigate the effect of CDNF overexpression in the hippocampus on exploratory, social, anxiety-like, depressive-like behavior and spatial learning, as well as on the expression of UPR genes in C57Bl/6J mice. Four weeks after stereotaxic injection of the adeno-associated viral vector AAV-CDNF, which overexpresses CDNF in the dorsal hippocampus, we found an increase in social interest in the three-chamber social test and the number and duration of social contacts in the resident-intruder test in the CDNF overexpression group. However, CDNF overexpression had no effect on UPR gene expression.

Толық мәтін

Рұқсат жабық

Авторлар туралы

D. Eremin

Institute of Cytology and Genetics, Siberian Branch of RAS

Email: antoncybko@mail.ru
Ресей, Novosibirsk

Ya. Kaminskaya

Institute of Cytology and Genetics, Siberian Branch of RAS

Email: antoncybko@mail.ru
Ресей, Novosibirsk

T. Ilchibaeva

Institute of Cytology and Genetics, Siberian Branch of RAS

Email: antoncybko@mail.ru
Ресей, Novosibirsk

V. Naumenko

Institute of Cytology and Genetics, Siberian Branch of RAS

Email: antoncybko@mail.ru
Ресей, Novosibirsk

A. Tsybko

Institute of Cytology and Genetics, Siberian Branch of RAS

Хат алмасуға жауапты Автор.
Email: antoncybko@mail.ru
Ресей, Novosibirsk

Әдебиет тізімі

  1. Seritan A.L. // J. Geriatr. Psychiatry Neurol. 2023. V. 36. P. 435–460.
  2. Parkash V., Lindholm P., Peränen J., Kalkkinen N., Oksanen E., Saarma M. // Protein Eng. Des. Sel. 2009. V. 22. P. 233–241.
  3. Lõhelaid H., Saarma M., Airavaara M. // Pharmacol. Ther. 2024. V. 254. P. 108594.
  4. Walter P., Ron D. // Science. 2011. V. 334. P. 1081–1086.
  5. Lindholm P., Voutilainen M.H., Laurén J., Peränen J., Leppänen V.-M., Andressoo J.-O., Harvey B.K., Hämäläinen E., Kopra J., Saarma M. // Nature. 2007. V. 448. P. 73–77.
  6. Voutilainen M.H., Bäck S., Peränen J., Lindholm P., Raasmaja A., Männistö P.T., Saarma M., Andressoo J.-O. // Exp. Neurol. 2011. V. 228. P. 99–108.
  7. Airavaara M., Harvey B.K., Voutilainen M.H., Shen H., Chou J., Lindholm P., Laukkanen M.O., Tuominen R.K., Saarma M., Hoffer B.J. // Cell Transplant. 2012. V. 21. P. 1213–1223.
  8. Ren X., Zhang T., Gong X., Hu G., Ding W., Wang X. // Exp. Neurol. 2013. V. 248. P. 148–156.
  9. Bäck S., Peränen J., Galli E., Pulkkila P., Lonka-Nevalaita L., Tamminen T., Voutilainen M.H., Saarma M., Tuominen R.K., Andressoo J.-O. // Brain Behav. 2013. V. 3. P. 75–88.
  10. Garea-Rodríguez E., Eesmaa A., Lindholm P., Schlumbohm C., König J., Meller B., Hämäläinen E., Voutilainen M.H., Saarma M. // PLoS ONE. 2016. V. 11.
  11. Huttunen H.J., Saarma M. // Cell Transplant. 2019. V. 28. P. 349–366.
  12. Stepanova P., Kumar D., Cavonius K., Korpikoski J., Sirjala J., Lindholm D., Voutilainen M.H. // Sci. Rep. 2023. V. 13. P. 1–17.
  13. Stepanova P., Srinivasan V., Lindholm D., Voutilainen M.H. // Sci. Rep. 2020. V. 10. P. 19045.
  14. De Lorenzo F., Lüningschrör P., Nam J., Beckett L., Pilotto F., Galli E., Lindholm P., Saarma M., Voutilainen M.H. // Brain. 2023. V. 146. P. 3783–3799.
  15. Kemppainen S., Lindholm P., Galli E., Lahtinen H.-M.M., Koivisto H., Hämäläinen E., Tanila H., Voutilainen M.H. // Behav. Brain Res. 2015. V. 291. P. 1–11.
  16. Kaminskaya Y.P., Ilchibaeva T.V., Khotskin N.V., Naumenko V.S., Tsybko A.S. // Biochemistry (Moscow). 2023. V. 88. P. 1070–1091.
  17. Tsybko A., Eremin D., Ilchibaeva T., Khotskin N., Naumenko V. // Int. J. Mol. Sci. 2024. V. 25. P. 10343.
  18. Chen Y.-C.C., Baronio D., Semenova S., Abdurakhmanova S., Panula P. // J. Neurosci. 2020. V. 40. P. 6146–6164.
  19. Grimm D., Kay M.A., Kleinschmidt J.A. // Mol. Ther. 2003. V. 7. P. 839–850.
  20. Kulikov A.V., Tikhonova M.A., Kulikov V.A. // J. Neurosci. Methods. 2008. V. 170. P. 345–351.
  21. Lueptow L.M. // J. Vis. Exp. 2017. P. 1–9.
  22. Kraeuter A.K., Guest P.C., Sarnyai Z. // Methods Mol. Biol. 2019. P. 69–74.
  23. Cryan J.F., Mombereau C., Vassout A. // Neurosci. Biobehav. Rev. 2005. V. 29. P. 571–625.
  24. Carter M., Shieh J. // Guide to Research Techniques in Neuroscience. 2nd ed. Elsevier, 2015.
  25. Yoon S.B., Park Y.H., Choi S.A., Yang H.J., Jeong P.S., Cha J.J., Dey M. // PLoS ONE. 2019. V. 14. P. e0219978.
  26. Kulikov A.V., Naumenko V.S., Voronova I.P., Tikhonova M.A., Popova N.K. // J. Neurosci. Methods. 2005. V. 141. P. 97–101.
  27. Naumenko V.S., Kulikov A.V. // Mol. Biol. 2006. V. 40. P. 30–36.
  28. Naumenko V.S., Osipova D.V., Kostina E.V., Kulikov A.V. // J. Neurosci. Methods. 2008. V. 170. P. 197–203.
  29. Kaminskaya Y.P., Ilchibaeva T.V., Shcherbakova A.I., Allayarova E.R., Popova N.K., Naumenko V.S. // Biochemistry (Moscow). 2024. V. 89. P. 1509–1518.
  30. Ilchibaeva T., Tsybko A., Lipnitskaya M., Eremin D., Milutinovich K., Naumenko V. // Biomedicines. 2023. V. 11. P. 1482.
  31. Alsalloum M., Ilchibaeva T., Tsybko A., Eremin D., Naumenko V. // Biomedicines. 2023. V. 11. P. 2573.
  32. Broad K.D., Mimmack M.L., Keverne E.B., Kendrick K.M. // Eur. J. Neurosci. 2002. V. 16. P. 2166–2174.
  33. de Castro C.M., Almeida-Santos A.F., Mansk L.M.Z., Jaimes L.F., Cammarota M., Pereira G.S. // Neurobiol. Learn. Mem. 2024. V. 208. P. 107891.
  34. Tzakis N., Holahan M.R. // Front. Behav. Neurosci. 2019. V. 13. P. 1–15.
  35. Liu Y., Deng S.L., Li L.X., Zhou Z.X., Lv Q., Wang Z.Y. // Sci. Adv. 2022. V. 8. P. 1–18.
  36. Kassraian P., Bigler S.K., Gilly Suarez D.M., Shrotri N., Barnett A., Lee H.-J. // Nat. Neurosci. 2024. V. 27. P. 2193–2206.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. The order of behavioral tests after the introduction of an adeno-associated viral construct providing overexpression of CDNF in the hippocampus.

Жүктеу (295KB)
3. Fig. 2. Cdnf mRNA level (a), CDNF protein level (b), and immunohistochemical staining of hippocampal sections (c) with antibodies to CDNF and calreticulin in mice injected with AAV_CDNF or AAV_EGFP. Protein levels are presented in relative units normalized to the corresponding GAPDH protein level. mRNA level is presented as the number of gene copies per 100 copies of the Polr2a gene. *** p < 0.001 compared to the control group.

Жүктеу (420KB)
4. Fig. 3. Effect of CDNF overexpression in the hippocampus on neophobia in the novel object recognition test (a), social preference index in the three-chamber social test (b), number (c) and duration (d) of sniffs, number (e) and duration (e) of attacks in the resident-intruder test (d). *p < 0.05 compared to the control group.

Жүктеу (227KB)
5. Fig. 4. Effect of hippocampal CDNF overexpression on spatial learning in the Morris water maze. Distance to platform (a); distance traveled (b), *** p < 0.001 compared to day 1 for AAV_EGFP, ### p < 0.001 compared to day 1 for AAV_CDNF; time spent on platform (c), *** p < 0.001 compared to day 1 for AAV_EGF, ### p < 0.001 compared to day 1 for AAV_CDNF; time spent in target sector on day 5 (d) *** p < 0.001 compared to opposite sector, ### p < 0.001 compared to 25% (random sector).

Жүктеу (290KB)
6. Fig. 5. Effect of CDNF overexpression in the hippocampus on the mRNA levels of Fos (a), Creb (e), c-Fos (b), CREB (e) proteins, their phosphorylated forms (c, g) and their ratio (d, h). Protein levels are presented in relative units normalized to the corresponding GAPDH protein level. The mRNA level is presented as the number of gene copies per 100 copies of the Polr2a gene.

Жүктеу (288KB)
7. Fig. 6. Effect of CDNF overexpression in the hippocampus on the mRNA levels of the genes Hspa5 (encodes the protein GRP78) (a), Eif2ak3 (encodes the protein PERK) (b), Atf6 (c), and Ern1 (encodes the protein IRE1) (d), as well as the ratio of the mRNA level of the spliced ​​form of the gene Xbp1 to the unspliced ​​form (e). The mRNA level is presented as the number of gene copies per 100 copies of the gene Polr2a.

Жүктеу (228KB)

© Russian Academy of Sciences, 2025