Role of Vimentin in Injuries of the Central Nervous System

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A special place in neurobiology is occupied by the study of glial activity during the development of central nervous system pathology. Debates about the dangers or benefits of glia have been ongoing, as well as the searching for ways to pharmacologically correct the glial activation pathways. It is steel remains unclear whether we should to completely disable glia from the regeneration process, or vice versa, activation of some glial functions is necessary. Vimentin, one of the structural components of the cytoskeleton, has been shown to reveal a dual functionality. Some studies demonstrates that, as a structural component of the glial scar, vimentin enhances the consolidation of the damaged area, preventing the axonal growth and the motor function restoration. Other researches, on the contrary, present vimentin as a secreted protein that has the abilities to attract the nerve fibers and promote the regeneration of damaged axons. To date the vimentin role in central nervous system (CNS) injuries has been described very poorly and the conclusions drawn are extremely contradictory. The purpose of this review is an attempt to summarize the recent studies results about the role of vimentin in modeling CNS damage.

Толық мәтін

Рұқсат жабық

Авторлар туралы

I. Manzhulo

A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, RAS

Хат алмасуға жауапты Автор.
Email: i-manzhulo@bk.ru
Ресей, Vladivostok

O. Manzhulo

A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, RAS

Email: i-manzhulo@bk.ru
Ресей, Vladivostok

A. Ponomarenko

A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, RAS

Email: i-manzhulo@bk.ru
Ресей, Vladivostok

Әдебиет тізімі

  1. Helfand B.T., Mendez M.G., Murthy S.N., Shumaker D.K., Grin B., Mahammad S., Aebi U., Wedig T., Wu Y.I., Hahn K.M., Inagaki M., Herrmann H., Goldman R.D. // Mol. Biol. Cell. 2011. V. 22. P. 1274–1289.
  2. Potokar M., Morita M., Wiche G., Jorgacevski J. // Cells. 2020. V. 9. P. 1604.
  3. Lin J., Cai W. // J. Neurotrauma. 2004. V. 21. P. 1671–1682.
  4. Eliasson C., Sahlgren C., Berthold C.H., Stakeberg J., Celis J.E., Betsholtz C., Eriksson J.E., Pekny M. // J. Biol. Chem. 1999. V. 274. P. 23996–24006.
  5. Eriksson J.E., Opal P., Goldman R.D. // Curr. Opin. Cell Biol. 1992. V.4. P. 99–104.
  6. Potokar M., Kreft M., Li L., Andersson J.D., Pangrsic T., Chowdhury H.H., Pekny M., Zorec R. // Traffic. 2007. V. 8. P. 12–20.
  7. De Pascalis C., Pérez-González C., Seetharaman S., Boëda B., Vianay B., Burute M., Leduc C., Borghi N., Trepat X., Etienne-Manneville S. // J. Cell Biol. 2018. V. 217. P. 3031–3044.
  8. De Pablo Y., Marasek P., Pozo-Rodrigálvarez A., Wilhelmsson U., Inagaki M., Pekna M., Pekny M. // Cells. 2019. V. 8. P. 1016.
  9. Eckes B., Dogic D., Colucci-guyon E., Wang N., Maniotis A., Ingber D., Merckling A., Langa F., Aumailley M., Delouvée A., Koteliansky V., Babinet C., Krieg T. // J. Cell Sci. 1998. V. 111. P. 1897–1907.
  10. Pekny M., Wilhelmsson U., Bogestål Y.R., Pekna M. // Int. Rev. Neurobiol. 2007. V. 82. P. 95–111.
  11. Ekmark-Lewén S., Lewén A., Israelsson C., Li G.L., Farooque M., Olsson Y., Ebendal T., Hillered L. // Restor. Neurol. Neurosci. 2010. V. 28. P. 311–321.
  12. Vinci L., Ravarino A., Fanos V., Naccarato A.G., Senes G., Gerosa C., Bevilacqua G., Faa G., Ambu R. // Eur. J. Histochem. 2016. V. 60. P. 2563.
  13. Dahl D. // J. Neurosci. Res. 1981. V. 6. P. 741–748.
  14. Gimenez y Ribotta M., Langa F., Menet V., Privat A. // Glia. 2000. V. 31. P. 69–83.
  15. Manzhulo I., Tyrtyshnaia A., Kipryushina Y., Dyuizen I., Ermolenko E., Manzhulo O. // Neurosci. Lett. 2018. V. 672. P. 6–14.
  16. Anderson M.A., Burda J.E., Ren Y., Ao Y., O’Shea T.M., Kawaguchi R., Coppola G., Khakh B.S., Deming T.J., Sofroniew M.V. // Nature. 2016. V. 532. P. 195–200.
  17. McLean W.H., Lane E.B. // Curr. Opin. Cell. Biol. 1995. V. 7. P. 118–125.
  18. Liedtke W., Edelmann W., Bieri P.L., Chiu F.C., Cowan N.J., Kucherlapati R., Raine C.S. // Neuron. 1996. V. 17. P. 607–615.
  19. Colucci-Guyon E., Portier M.M., Dunia I., Paulin D., Pournin S., Babinet C. // Cell. 1994. V. 79. P. 679–694.
  20. Wang X., Messing A., David S. // Exp. Neurol. 1997. V. 148. P. 568–576.
  21. Pekny M., Johansson C.B., Eliasson C., Stakeberg J., Wallén A., Perlmann T., Lendahl U., Betsholtz C., Berthold C.H., Friséne J. // J. Cell. Biol. 1999. V. 145. P. 503–514.
  22. Menet V., Gime´nez y Ribotta M., Chauvet N., Drian M.J., Lannoy J., Colucci-Guyon E., Privat A. // J. Neurosci. 2001. V. 21. P. 6147–6158.
  23. Saunders N.R., Deal A., Knott G.W., Varga Z.M., Nicholls J.G. // Clin. Exp. Pharmacol. Physiol. 1995. V. 22. P. 518–526.
  24. Barrett C.P., Donati E.J., Guth L. // Exp. Neurol. 1984. V. 84. P. 374–385.
  25. Davies J.A., Goucher D.R., Doller C., Silver J. // J. Neurosci. 1999. V. 19. P. 5810–5822.
  26. Bradbury E.J., Moon L.D., Popat R.J., King V.R., Bennett G.S., Patel P.N., Fawcett J.W., McMahon S.B. // Nature. 2002. V. 416. P. 636–640.
  27. Menet V., Prieto M., Privat A., Gimenez y Ribotta M. // Proc. Natl. Acad. Sci. USA. 2003. V. 100. P. 8999–9004.
  28. Bareyre F.M., Handenschild B., Schwab M.E. // J. Neurosci. 2002. V. 22. P. 7097–7110.
  29. Schwab M.E. // Prog. Brain Res. 2002. V. 137. P. 351–359.
  30. Silver J., Miller J.H. // Nat. Rev. Neurosci. 2004. V. 5. P. 146–156.
  31. Liddelow S.A., Barres B.A. // Nature. 2016. V. 532. P. 182–183.
  32. Yiu G., He Z. // Nat. Rev. Neurosci. 2006. V. 7. P. 617–627.
  33. Rolls A., Shechter R., Schwartz M. // Nat. Rev. Neurosci. 2009. V. 10. P. 235–241.
  34. White R.E., Rao M., Gensel J.C., McTigue D.M., Kaspar B.K., Jakeman L.B. // J. Neurosci. 2011. V. 31. P. 15173–15187.
  35. Bareyre F.M., Schwab M.E. // Trends. Neurosci. 2003. V. 26. P. 555–563.
  36. Teshigawara K., Kuboyama T., Shigyo M., Nagata A., Sugimoto K., Matsuya Y., Tohda C. // Br. J. Pharmacol. 2013. V. 168. P. 903–919.
  37. Hsu J.Y., Xu X.M. // J. Neurosci. Res. 2005. V. 82. P. 472–483.
  38. Busch S.A., Horn K.P., Cuascut F.X., Hawthorne A.L., Bai L., Miller R.H., Silver J. // J. Neurosci. 2010. V. 30. P. 255–265.
  39. Johansson C.B., Momma S., Clarke D.L., Risling M., Lendahl U., Frisén J. // Cell. 1999. V. 96. P. 25–34.
  40. Terzi F., Henrion D., Colucci-Guyon E., Federici P., Babinet C., Levy B.I., Briand P., Friedlander G. // J. Clin. Invest. 1997. V. 100. P. 1520–1528.
  41. Ivaska J., Pallari H.M., Nevo J., Eriksson J.E. // Exp. Cell. Res. 2007. V. 313. P. 2050–2062.
  42. Tsuruta D., Jones J.C. // J. Cell. Sci. 2003. V. 116. P. 4977–4984.
  43. Wang K., Bekar L.K., Furber K., Walz W. // Brain Res. 2004. V. 1024. P. 193–202.
  44. Joosten E.A., Gribnau A.A. // Neurosci. 1989. V. 31. P. 439–452.
  45. Mor-Vaknin N., Punturieri A., Sitwala K., Markovitz D.M. // Nat. Cell. Biol. 2003. V.5. P. 59–63.
  46. Xu B., deWaal R.M., Mor-Vaknin N., Hibbard C., Markovitz D.M., Kahn M.L. // Mol. Cell. Biol. 2004. V. 24. 9198–9206.
  47. Cordero-Llana O., Scott S.A., Maslen S.L., Anderson J.M., Boyle J., Chowhdury R.R., Tyers P., Barker R.A., Kelly C.M., Rosser A.E, Stephens E., Chandran S., Caldwell M.A. // Cell. Death. Differ. 2011. V. 18. P. 907–913.
  48. Greco T.M., Seeholzer S.H., Mak A., Spruce L., Ischiropoulos H. // J. Proteome. Res. 2010. V. 9. P. 2764–2774.
  49. Dubey M., Hoda S., Chan W.K.-H., Pimenta A., Ortiz D.D., Shea T.B. // J. Neurosci. Res. 2004. V. 78. P. 245–249.
  50. Shigyo M., Tohda C. // Sci. Rep. 2016. V. 6. P. 28293.
  51. Han Q., Cao C., Ding Y., So K.F., Wu W., Qu Y., Zhou L. // Exp. Neurol. 2015. V. 267. P. 194–208.
  52. Camand E., Morel M.P., Faissner A., Sotelo C., Dusart I. // Eur. J. Neurosci. 2004. V. 20. P. 1161–1176.
  53. Jacobs B.L., Martin-Cora F.J., Fornal C.A. // Brain Res. Rev. 2002. V. 40. P. 45–52.
  54. Ruschel J., Hellal F., Flynn K.C., Dupraz S., Elliott D.A., Tedeschi A., Bates M., Sliwinski C., Brook G., Dobrindt K., Peitz M., Brüstle O., Norenberg M.D., Blesch A., Weidner N., Bunge M.B., Bixby J.L., Bradke F. // Science. 2015. V. 348. P. 347–352.
  55. Shigyo M., Kuboyama T., Sawai Y., Tada-Umezaki M., Tohda C. // Sci. Rep. 2015. V. 5. P. 12055.
  56. Walter H.J., Berry M., Hill D.J., Logan A. // Endocrinology. 1997. V. 138. P. 3024–3034.
  57. Fernandez A.M., Torres-Aleman I. // Nat. Rev. Neurosci. 2012. V.13. P. 225–239.
  58. Liu J.P., Baker J., Perkins A.S., Robertson E.J., Efstratiadis A. // Cell. 1993. V. 75. P. 59–72.
  59. Broughton K.S., Wade J.W. // J. Nutr. 2002. V. 132. P. 88–94.
  60. Jump D.B. // Curr. Opin. Lipidol. 2002. V. 13. P. 155–164.
  61. Zhang X., Wang X., Liu T., Mo M., Ao L., Liu J. // PPAR Res. 2015. P. 489314.
  62. Fuchs E., Cleveland D.W. // Science. 1998. V. 279. P. 514–519.
  63. Gomi H., Yokoyama T., Fujimoto K., Ikeda T., Katoh A., Itoh T., Itohara S. // Neuron. 1995. V. 14. P. 29–41.
  64. Pekny M., Leveen P., Pekna M., Eliasson C., Berthold C.H., Westermark B., Betsholtz C. // EMBO J. 1995. V.14. P. 1590–1598.
  65. Wilhelmsson U., Li L., Pekna M., Berthold C.H., Blom S., Eliasson C., Renner O., Bushong E., Ellisman M., Morgan T.E., Pekny M. // J. Neurosci. 2004. V. 24. P. 5016–5021.
  66. Tyrtyshnaia A., Manzhulo O., Manzhulo I. // Int. J. Mol. Sci. 2023. V. 24. P. 10014–10043.
  67. Pekny M., Pekna M. // Physiol. Rev. 2014. V. 94. P. 1077–1098.
  68. Liu Z., Li Y., Cui Y., Roberts C., Lu M., Wilhelmsson U., Pekny M., Chopp M. // Glia. 2014. V. 62. P. 2022–2033.
  69. Potokar M., Stenovec M., Jorgačevski J., Holen T., Kreft M., Ottersen O.P., Zorec R. // Glia. 2013. V. 61. P. 917–928.
  70. Vizuete M.L., Venero J.L., Vargas C., Ilundáin A.A., Echevarría M., Machado A., Cano J. // Neurobiol. Dis. 1999. V. 6. P. 245–258.
  71. Jiang S.X., Slinn J., Aylsworth A., Hou S.T. // J. Neurochem. 2021. V. 158. P. 571–572.
  72. Pekny M. // Prog. Brain Res. 2001. V. 132. P. 23–30.
  73. Pekny M., Pekna M. // J. Pathol. 2004. V. 204. P. 428–437.
  74. Pekny M., Nilsson M. // Glia. 2005. V. 50. P. 427–434.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Localization of GFAP- and vimentin-positive astrocytes in the glial scar surrounding the injury site on day 7 after spinal cord injury [15]. Scale bar is 50 µm.

Жүктеу (1MB)
3. Fig. 2. The role of vimentin in glial scar formation. Created with BioRender.com.

Жүктеу (421KB)
4. Fig. 3. Distribution of GFAP- and vimentin-positive astrocytes in the brain 1–56 days after traumatic injury of the cerebral cortex (a) [66]. Scale bar – 50 μm. Staining area of ​​(b) GFAP- and (c) vimentin-positive astrocytes in the brain after injury, mean ± SEM, n = 5 (number of animals/group), * p < 0.05, (Mann–Whitney test).

Жүктеу (643KB)

© Russian Academy of Sciences, 2025