Investigation of the Biodistribution of Gd0.5La0.5F3:Eu Nanoparticles in the Internal Tissues of Laboratory Mice Using X-Ray Computed Tomography and X-Ray Fluorescence Analysis

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The biodistribution of Gd0.5La0.5F3:Eu(15%) X-ray phosphor nanoparticles in the body and tissues of internal organs of balb/c laboratory mice was studied. Gd0.5La0.5F3:Eu(15%) nanoparticles were obtained by the hydrothermal synthesis at 250°C for 24 h. Using X-ray powder diffraction, transmission electron microscopy, and dynamic light scattering, it was shown that a hexagonal phase was formed in the resulting sample, and the average size of nanoparticles varied in the range 30–40 nm. In vivo experiments have shown that intravenous administration of an aqueous solution of nanoparticles accumulates the sample mainly in the liver and spleen, with the maximum concentration being reached during the first day. According to the results of post-mortem analysis of tissues by micro-CT, it was shown that these nanoparticles formed conglomerates, their distribution over the volume of the organ was homogeneous. X-ray fluorescent analysis of liver and spleen tissue fragments allowed for elemental analysis and mapping. Distribution maps of heavy elements in the composition of nanoparticles (Gd, La, Eu) were similar to Fe distribution maps, which indicated the uniform distribution of Gd0.5La0.5F3:Eu(15%) nanoparticles in the pulp of the internal tissues of the liver and spleen.

Sobre autores

O. Polozhentsev

The Smart Materials Research Institute, Southern Federal University

Autor responsável pela correspondência
Email: oepolozhentsev@sfedu.ru
Russia, 344090, Rostov-on-Don

D. Khodakova

National Medical Research Centre for Oncology of the Ministry of Health of Russia

Email: oepolozhentsev@sfedu.ru
Russia, 344037, Rostov-on-Don

A. Goncharova

National Medical Research Centre for Oncology of the Ministry of Health of Russia

Email: oepolozhentsev@sfedu.ru
Russia, 344037, Rostov-on-Don

I. Pankin

The Smart Materials Research Institute, Southern Federal University

Email: oepolozhentsev@sfedu.ru
Russia, 344090, Rostov-on-Don

A. Soldatov

The Smart Materials Research Institute, Southern Federal University

Email: oepolozhentsev@sfedu.ru
Russia, 344090, Rostov-on-Don

Bibliografia

  1. Kandasamy G., Maity D. // Mater. Sci. Eng. C. 2021. V. 127. P. 112199. https://doi.org/10.1016/j.msec.2021.112199
  2. Chen W., Zhang J. // J. Nanosci. Nanotechnol. 2006. V. 6. P. 1159. https://doi.org/10.1166/jnn.2006.327
  3. Ren X.-D., Hao X.-Y., Li H.-C., Ke M.-R., Zheng B.-Y., Huang J.-D. // Drug Discov. Today. 2018. V. 23. P. 1791. https://doi.org/10.1016/j.drudis.2018.05.029
  4. Fan W., Tang W., Lau J., Shen Z., Xie J., Shi J., Chen X. // Adv. Mater. 2019. V. 31. P. 1806381. https://doi.org/10.1002/adma.201806381
  5. Shapoval O., Kaman O., Hromádková J., Vavřík D., Jirák D., Machová D., Parnica J., Horak D. // ChemPlusChem. 2019. V. 84. Iss. 8. P. 1135. https://doi.org/10.1002/cplu.201900352
  6. Grzyb T., Runowski M., Lis S. // J. Lumin. 2014. V. 154. P. 479. https://doi.org/10.1016/j.jlumin.2014.05.020
  7. Elmenoufy A.H., Tang Y., Hu J., Xu H., Yang X. // Chem. Commun. 2015. V. 51. № 61. P. 12247. https://doi.org/10.1039/c5cc04135j
  8. Maksimchuk P.O., Hubenko K.O., Bespalova I.I., Sorokin A.V., Borovoy I.A., Yefimova S.L. // J. Mol. Liq. 2021. V. 330. P. 115653. https://doi.org/10.1016/j.molliq.2021.115653
  9. Agostinis P., Berg K., Cengel K.A., Foster T.H., Girotti A.W., Gollnick S.O., Hahn S.M., Hamblin M.R., Juzeniene A., Kessel D. // CA Cancer J. Clin. 2011. V. 61. P. 250. https://doi.org/10.3322/caac.20114
  10. Kamkaew A., Chen F., Zhan Y., Majewski R.L., Cai W. // ACS Nano. 2016. V. 10. P. 3918. https://doi.org/10.1021/acsnano.6b01401
  11. Tang Y., Hu J., Elmenoufy A.H., Yang X. // ACS Appl. Mater. Interfaces. 2015. V. 7. № 22. P. 12261. https://doi.org/10.1021/acsami.5b03067
  12. Liang C., Wang Z., Zhang Y., Duan W., Yue W., Ding Y., Wei W. // CrystEngComm. 2014. V. 16. № 23. P. 4963. https://doi.org/10.1039/c3ce42629g
  13. Polozhentsev O.E., Pankin I.A., Khodakova D.V., Medvedev P.V., Goncharova A.S., Maksimov A.Y., Kit O.I., Soldatov A.V. // Materials. 2022. V. 15. P. 569. https://doi.org/10.3390/ma15020569
  14. Horak D., Shapoval O., Kaman O., Hromadkova J., Vavrik D., Jirak D., Machova D., Parnica J. // Chem- PlusChem. 2019. https://doi.org/10.1002/cplu.201900352
  15. Wang Y., Wang J., Zhu D., Wang Y., Qing G., Zhang Y., Liang X.-J. // Acta Pharm. Sin. B. 2021. V. 11. № 4. P. 886. https://doi.org/10.1016/j.apsb.2021.03.007
  16. Mahaling B., Verma M., Mishra G., Chaudhuri S., Dutta D., Sivakumar S. // Nanotoxicology. 2020. V. 14. № 5. P. 577. https://doi.org/10.1080/17435390.2019.1708494

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (86KB)
4.

Baixar (262KB)
5.

Baixar (1MB)
6.

Baixar (3MB)
7.

Baixar (2MB)

Declaração de direitos autorais © О.Е. Положенцев, Д.В. Ходакова, А.С. Гончарова, И.А. Панкин, А.В. Солдатов, 2023