Integrated Study of Solid Uranium-Containing Materials for the Purposes of Nuclear Forensics

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An optimal algorithm is presented for studying unknown samples of solid uranium-containing materials and obtaining the maximum possible information about their similarities and differences, about their production technology and a possible source of origin for the purposes of nuclear forensics. The results of the study of physical characteristics, isotopic, elemental and phase composition, morphology and other parameters of material samples obtained by the Laboratory in the course of participation in the international experiment CMX5 (Collaborative Materials Exercise 5), organized by the Nuclear Forensics International Technical Working Group, are analyzed.

About the authors

A. V. Zhukov

Laboratory for Microparticle Analysis; D. Mendeleev University of Chemical Technology of Russia

Author for correspondence.
Email: a.zhukov@lma.su
Russia, 117218, Moscow; Russia, 125047, Moscow

A. V. Kuchkin

Laboratory for Microparticle Analysis

Author for correspondence.
Email: a.kuchkin@lma.su
Russia, 117218, Moscow

K. D. Zhizhin

Laboratory for Microparticle Analysis

Email: a.kuchkin@lma.su
Russia, 117218, Moscow

A. S. Babenko

Laboratory for Microparticle Analysis

Email: a.kuchkin@lma.su
Russia, 117218, Moscow

Y. A. Komarov

Laboratory for Microparticle Analysis

Email: a.kuchkin@lma.su
Russia, 117218, Moscow

V. A. Stebelkov

Laboratory for Microparticle Analysis

Email: a.kuchkin@lma.su
Russia, 117218, Moscow

References

  1. Kristo M.J., Gaffney A.M., Marks N. et al. // Annu. Rev. Earth Planetary Sci. 2016. V. 44. P. 555. https://doi.org/10.1146/annurev-earth-060115-012309
  2. Mayer K., Wallenius M., Varga Z. // Chem. Rev. 2013. V. 113. P. 884.
  3. Nuclear Forensics in Support of Investigations. Vienna: IAEA, 2015. 67 p. https://www-pub.iaea.org/MTCD/Publications/PDF/ Pub1687web-74206224.pdf
  4. Krachler M., Varga Z., Nicholl A. et al. // Microchem. J. 2018. V. 140. P. 24. https://doi.org/10.1016/j.microc.2018.03.038
  5. Parsons-Davis T., Knight K., Fitzgerald M. et al. // Forensic Sci. Int. 2018. V. 286. P. 223. https://doi.org/10.1016/j.forsciint.2018.03.027
  6. Higginson M., Gilligan C., Taylor F. et al. // J. Radioanal. Nucl. Chem. 2018. V. 318. P. 157. https://doi.org/10.1007/s10967-018-6021-z
  7. Kaltofen M. // Environ. Engin. Sci. 2019. V. 36. P. 1. https://doi.org/10.1089/ees.2018.0036
  8. Vlasova I.E., Kalmykov S.N., Sapozhnikov Y.A. et al. // Radiochem. 2006. V. 48. P. 613. https://doi.org/10.1134/S1066362206060154
  9. Kaltofen M., Gundersen A. // Sci. Total Environ. 2017. V. 607–608. P. 1065. https://doi.org/10.1016/j.scitotenv.2017.07.091
  10. Marin R.C., Sarkis J.E.S., Nascimento M.R.L. // J. Radioanal. Nucl. Chem. 2013. V. 295. P. 99. https://doi.org/10.1007/s10967-012-1980-y
  11. Spano T.L., Simonetti A., Balboni E. et al. // Appl. Geochem. 2017. V. 84. P. 277.
  12. Kuchkin A., Stebelkov V., Zhizhin K. et al. // J. Radioanal. Nucl. Chem. 2018. V. 315. P. 435. https://doi.org/10.1007/s10967-017-5681-4
  13. Hubert A., Claverie F., Pécheyran C., Pointurier F. // Spectrochim. Acta. B. 2014. V. 93. P. 52. https://doi.org/10.1016/j.sab.2013.12.007
  14. Donard A., Pointurier F., Pottin A.-C. et al. // J. Anal. Atom. Spectr. 2017. V. 32. P. 96. https://doi.org/10.1039/C6JA00071A
  15. Boulyga S.F., Prohaska T. // Anal. Bioanal. Chem. 2008. V. 390. P. 531. https://doi.org/10.1007/s00216-007-1575-6
  16. Lloyd N.S., Parrish R.R., Horstwood M.S.A., Chenery S.R.N. // J. Anal. Atom. Spectry. 2009. V. 24. P. 752. https://doi.org/10.1039/B819373H
  17. Zhukov A.V., Kuchkin A.V., Babenko A.S. et al. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2021. V. 15. P. 52. https://doi.org/10.1134/S1027451021010183
  18. Identification of High Confidence Nuclear Forensics Signatures. Vienna: IAEA, 2017. 118 p. ISBN 978-92-0-105617-7
  19. Schwantes J.M., Marsden O., Reilly D. // J. Radioanal. Nucl. Chem. 2018. V. 315. P. 347. https://doi.org/10.1007/s10967-017-5663-6
  20. ITWG Nuclear Forensics Update. 2017. № 4. 8 p. http://www.nf-itwg.org/newsletters/ITWG_Update_ no_4.pdf
  21. Taylor F., Schwantes J.M., Marsden O. et al. // J. Radioanal. Nucl. Chem. 2020. V. 323. P. 415. https://doi.org/10.1007/s10967-019-06950-7

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (934KB)
3.

Download (1MB)
4.

Download (2MB)
5.

Download (134KB)
6.

Download (81KB)
7.

Download (174KB)
8.

Download (146KB)

Copyright (c) 2023 А.В. Жуков, А.В. Кучкин, К.Д. Жижин, А.С. Бабенко, Ю.А. Комаров, В.А. Стебельков