Integrated Study of Solid Uranium-Containing Materials for the Purposes of Nuclear Forensics
- Authors: Zhukov A.V.1,2, Kuchkin A.V.1, Zhizhin K.D.1, Babenko A.S.1, Komarov Y.A.1, Stebelkov V.A.1
-
Affiliations:
- Laboratory for Microparticle Analysis
- D. Mendeleev University of Chemical Technology of Russia
- Issue: No 2 (2023)
- Pages: 102-112
- Section: Articles
- URL: https://ruspoj.com/1028-0960/article/view/664617
- DOI: https://doi.org/10.31857/S1028096023020164
- EDN: https://elibrary.ru/DTPRQH
- ID: 664617
Cite item
Abstract
An optimal algorithm is presented for studying unknown samples of solid uranium-containing materials and obtaining the maximum possible information about their similarities and differences, about their production technology and a possible source of origin for the purposes of nuclear forensics. The results of the study of physical characteristics, isotopic, elemental and phase composition, morphology and other parameters of material samples obtained by the Laboratory in the course of participation in the international experiment CMX5 (Collaborative Materials Exercise 5), organized by the Nuclear Forensics International Technical Working Group, are analyzed.
About the authors
A. V. Zhukov
Laboratory for Microparticle Analysis; D. Mendeleev University of Chemical Technology of Russia
Author for correspondence.
Email: a.zhukov@lma.su
Russia, 117218, Moscow; Russia, 125047, Moscow
A. V. Kuchkin
Laboratory for Microparticle Analysis
Author for correspondence.
Email: a.kuchkin@lma.su
Russia, 117218, Moscow
K. D. Zhizhin
Laboratory for Microparticle Analysis
Email: a.kuchkin@lma.su
Russia, 117218, Moscow
A. S. Babenko
Laboratory for Microparticle Analysis
Email: a.kuchkin@lma.su
Russia, 117218, Moscow
Y. A. Komarov
Laboratory for Microparticle Analysis
Email: a.kuchkin@lma.su
Russia, 117218, Moscow
V. A. Stebelkov
Laboratory for Microparticle Analysis
Email: a.kuchkin@lma.su
Russia, 117218, Moscow
References
- Kristo M.J., Gaffney A.M., Marks N. et al. // Annu. Rev. Earth Planetary Sci. 2016. V. 44. P. 555. https://doi.org/10.1146/annurev-earth-060115-012309
- Mayer K., Wallenius M., Varga Z. // Chem. Rev. 2013. V. 113. P. 884.
- Nuclear Forensics in Support of Investigations. Vienna: IAEA, 2015. 67 p. https://www-pub.iaea.org/MTCD/Publications/PDF/ Pub1687web-74206224.pdf
- Krachler M., Varga Z., Nicholl A. et al. // Microchem. J. 2018. V. 140. P. 24. https://doi.org/10.1016/j.microc.2018.03.038
- Parsons-Davis T., Knight K., Fitzgerald M. et al. // Forensic Sci. Int. 2018. V. 286. P. 223. https://doi.org/10.1016/j.forsciint.2018.03.027
- Higginson M., Gilligan C., Taylor F. et al. // J. Radioanal. Nucl. Chem. 2018. V. 318. P. 157. https://doi.org/10.1007/s10967-018-6021-z
- Kaltofen M. // Environ. Engin. Sci. 2019. V. 36. P. 1. https://doi.org/10.1089/ees.2018.0036
- Vlasova I.E., Kalmykov S.N., Sapozhnikov Y.A. et al. // Radiochem. 2006. V. 48. P. 613. https://doi.org/10.1134/S1066362206060154
- Kaltofen M., Gundersen A. // Sci. Total Environ. 2017. V. 607–608. P. 1065. https://doi.org/10.1016/j.scitotenv.2017.07.091
- Marin R.C., Sarkis J.E.S., Nascimento M.R.L. // J. Radioanal. Nucl. Chem. 2013. V. 295. P. 99. https://doi.org/10.1007/s10967-012-1980-y
- Spano T.L., Simonetti A., Balboni E. et al. // Appl. Geochem. 2017. V. 84. P. 277.
- Kuchkin A., Stebelkov V., Zhizhin K. et al. // J. Radioanal. Nucl. Chem. 2018. V. 315. P. 435. https://doi.org/10.1007/s10967-017-5681-4
- Hubert A., Claverie F., Pécheyran C., Pointurier F. // Spectrochim. Acta. B. 2014. V. 93. P. 52. https://doi.org/10.1016/j.sab.2013.12.007
- Donard A., Pointurier F., Pottin A.-C. et al. // J. Anal. Atom. Spectr. 2017. V. 32. P. 96. https://doi.org/10.1039/C6JA00071A
- Boulyga S.F., Prohaska T. // Anal. Bioanal. Chem. 2008. V. 390. P. 531. https://doi.org/10.1007/s00216-007-1575-6
- Lloyd N.S., Parrish R.R., Horstwood M.S.A., Chenery S.R.N. // J. Anal. Atom. Spectry. 2009. V. 24. P. 752. https://doi.org/10.1039/B819373H
- Zhukov A.V., Kuchkin A.V., Babenko A.S. et al. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2021. V. 15. P. 52. https://doi.org/10.1134/S1027451021010183
- Identification of High Confidence Nuclear Forensics Signatures. Vienna: IAEA, 2017. 118 p. ISBN 978-92-0-105617-7
- Schwantes J.M., Marsden O., Reilly D. // J. Radioanal. Nucl. Chem. 2018. V. 315. P. 347. https://doi.org/10.1007/s10967-017-5663-6
- ITWG Nuclear Forensics Update. 2017. № 4. 8 p. http://www.nf-itwg.org/newsletters/ITWG_Update_ no_4.pdf
- Taylor F., Schwantes J.M., Marsden O. et al. // J. Radioanal. Nucl. Chem. 2020. V. 323. P. 415. https://doi.org/10.1007/s10967-019-06950-7
Supplementary files
