Study of SiO2 films implanted with 64Zn+ ions and oxidized at elevated temperatures

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of studying SiO2 films implanted with 64Zn ions with a dose of 5 × 1016 cm–2 at energies of 20 and 120 keV and isochronously oxidized for 1 h at temperatures from 400 to 800°C with a step of 100°C are presented. The profiles of Zn and its oxide were studied using Rutherford backscattering and time-of-flight secondary ion mass spectrometry. The chemical state of zinc and the phase composition of the film were determined by Auger electron spectroscopy and Raman scattering. It was found that after implantation, the zinc distribution had two maxima at depths of 20 and 85 nm, and after annealing at 700°C there was a broadened maximum at a depth of 45 nm. After implantation, a mixture of Zn and ZnO phases was formed in the sample. After annealing at 700°C, only the ZnO phase was formed in the sample, the distribution profile of which had a broadened peak at 45 nm.

Texto integral

Acesso é fechado

Sobre autores

V. Privezentsev

FSC “Scientific Research Institute for System Analysis RAS”

Autor responsável pela correspondência
Email: v.privezentsev@mail.ru
Rússia, 117218, Moscow

A. Sergeev

FSC “Scientific Research Institute for System Analysis RAS”

Email: v.privezentsev@mail.ru
Rússia, 117218, Moscow

A. Firsov

FSC “Scientific Research Institute for System Analysis RAS”

Email: v.privezentsev@mail.ru
Rússia, 117218, Moscow

V. Kulikauskas

Lomonosov Moscow State University

Email: v.privezentsev@mail.ru

Skobeltsyn Institute of Nuclear Physics

Rússia, 119991, Moscow

V. Zatekin

Lomonosov Moscow State University

Email: v.privezentsev@mail.ru

Skobeltsyn Institute of Nuclear Physics

Rússia, 119991, Moscow

E. Kirilenko

Institute of Nanotechnology Microelectronics RAS

Email: v.privezentsev@mail.ru
Rússia, 119991, Moscow

A. Goryachev

Institute of Nanotechnology Microelectronics RAS

Email: v.privezentsev@mail.ru
Rússia, 119991, Moscow

V. Kovalskiy

Institute of Microelectronics Technology RAS

Email: v.privezentsev@mail.ru
Rússia, 142432, Chernogolovka

Bibliografia

  1. Yang J.J., Strukov D.B., Stewart D.R. // Nature Nanotechnol. 2013. V. 8. P. 14. https://www.doi.org/10.1038/nnano.2012.240
  2. Tripathi S.K., Kaur R., Rani M. // Solid State Phenom. 2015. V. 222. P. 67. https://www.doi.org/10.4028/www.scientific.net/SSP.222.67
  3. Advances in Memristors, Memristive Devices and Systems. Series “Studies in Computational Intelligence”. Vol. 701. / Ed. Vaidyanathan S., Volos C. Springer, 2017. 511 p. https://www.doi.org/10.1007/978-3-319-51724-7
  4. Chang T.-C., Chang K.-C., Tsai T.-M., Chu T.-J., Sze S.M. // Mater. Today. 2016. V. 19. Iss. 5. P. 254. https://www.doi.org/10.1016/j.mattod.2015.11.009
  5. Mehonic C.C., Shluger A.L., Gao D., Valov I., Miranda E., Ielmini D., Bricalli A., Ambrosi E., Li C., Yang J.J., Xia Q., Kenyon A.J. // Adv. Mater. 2018. V. 30. Iss. 43. P. 1801187. https://www.doi.org/10.1002/adma.201801187
  6. Ilyas N., Li C., Wang J., Jiang X., Fu H., Liu F., Gu D., Jiang Y., Li J. // Phys. Chem. Lett. 2022. V. 13. № 3. P. 884. https://www.doi.org/10.1021/acs.jpclett.1c03912
  7. Litton С.W., Collins T.C., Reynolds D.S. Zinc Oxide Material for Electronic and Optoelectronic Device Application. Chichester: Wiley, 2011. 363 p. https://www.doi.org/10.1002/9781119991038
  8. Chu S., Olmedo M., Yang Zh., Kong J., Liu J. // Appl. Phys. Lett. 2008. V. 93. P. 181106. https://www.doi.org/10.1063/1.3012579
  9. Jiang C.Y., Sun X.W., Lo G.Q., Kwong D.L., Wang J.X. // Appl. Phys. Lett. 2007. V. 90. P. 263501. https://www.doi.org/10.1063/1.2751588
  10. Huang J.S., Yen W.C., Lin S.M., Lee C.Y., Wu J., Wang Z.M., Chin T.S., Chueh Y.L. // J. Mater. Chem. C. 2014. V. 2. P. 4401. https://www.doi.org/10.1039/C3TC32166E
  11. Tsai T.M., Chang K.C., Chang T.C., Syu Y.E., Liao K.H., Tseng B.H., Sze S.M. // Appl. Phys. Lett. 2012. V. 101. Iss. 11. P. 112906. https://www.doi.org/10.1063/1.4750235
  12. Chang K.C., Tsai T.M., Chang T.C., Wu H.H., Chen J.H., Syu Y.E., Chang G., Chu T.J., Liu G.R., Su Y.T., Chen M.C., Pan J.H., Chen J.Y., Tung C.W., Huang H.C., Tai Y.H., Gan D.S., Sze S.M. // IEEE Elecron. Dev. Lett. 2013. V. 34. № 3. P. 399. https://www.doi.org/10.1109/LED.2013.2241725
  13. Chang K.C., Tsai T.M., Chang T.C., Wu H.H., Chen K.H., Chen J.H., Young T.F., Chu T.J., Chen J.Y., Pan C.H., Chen J.Y., Tung C.W., Huang H.C., Tai Y.H., Gan D.S., Sze S.M. // IEEE Electron. Dev. Lett. 2013. V. 34. № 4. P. 511. https://www.doi.org/10.1109/LED.2013.2248075
  14. Zhang R., Tsai T.M., Chang T.C., Chang K.C., Chen K.H., Lou J.C., Young T.F., Chen J.H., Huang S.Y., Chen M.C., Shih C.C., Chen H.L., Pan J.H., Tung C.W., Syu Y.E., Sze S.M. // J. Appl. Phys. 2013. V. 114. P. 234501. http://dx.doi.org/10.1063/1.4843695
  15. Ziegler J.F., Biersack J.P. SRIM 2008 (http://www.srim.org).
  16. Hofmann S. Auger- and X-Ray Photoelectron Spectroscopy in Material Science. Berlin–Heidelberg: Springer–Verlag, 2013. 528 p. https://www.doi.org/10.1007/978-3-642-27381-0
  17. Анализ поверхности методами оже- и рентгеновской фотоэлектронной спектроскопии / Ред. Бриггс Д., Сих М.П. М.: Мир, 1987. 598 c.
  18. Монахова Ю.Б., Муштакова С.П. // Журн. аналитической химии. 2012. Т. 67. № 12. C. 1044.
  19. Huang Y., Liu M., Li Z., Zeng Y., Liu S. // Mater. Sci. Engin. B. 2003. V. 97. Iss. 2. P. 111. https://www.doi.org/10.1016/S0921-5107(02)00396-3
  20. Garcia-Sotelo A., Avila-Meza M., Melendez-Lira M.A., Fernandez-Muñoz J.L., Zelaya-Ange O. // Mater. Res. 2019. V. 22. Iss. 4. P. e201901059. https://www.doi.org/10.1590/1980-5373-MR-2019-0105
  21. Torchynska T., El Filali B., Polupan G., Shcherbyna L. // MRS Adv. 2019. V. 2. P. 1. https://www.doi.org/10.1557/adv.2017.344
  22. Chen S.J., Liu Y.C., Lu Y.M., Zhang J.Y., Shen D.Z., Fan X.W. // J. Cryst. Growth. 2006. V. 289. P. 55. https://www.doi.org/10.1016/j.jcrysgro.2005.10.137

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Experimental RBS spectra after Zn implantation (1) and after annealing at 700°C (2).

Baixar (65KB)
3. Fig. 2. Distributions of Zn+ (1) and ZnO– (2) ions by depth after implantation (a) and after annealing at 700°C (b), obtained using time-of-flight SIMS.

Baixar (118KB)
4. Fig. 3. Deconvolution of the experimental differential Auger peak of Zn (1) by the reference spectra of Zn (metallic) (2) and ZnO (3) for the implanted sample (a) and after annealing at 700°C (b).

Baixar (136KB)
5. Fig. 4. Raman spectra of a silicon oxide film implanted with Zn: a – after implantation (1) and annealing at 400 (2), 600 (3) and 800°C (4); b – decomposition of spectrum 4 into components.

Baixar (122KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024