Temperature dependence of structural parameters of thin films of polystyrene—fullerene С60/С70 nanocomposite according to neutron reflectometry data
- Authors: Tropin T.V.1, Avdeev M.V.1, Aksenov V.L.1
- 
							Affiliations: 
							- Joint Institute for Nuclear Research
 
- Issue: No 7 (2024)
- Pages: 3-8
- Section: Articles
- URL: https://ruspoj.com/1028-0960/article/view/664787
- DOI: https://doi.org/10.31857/S1028096024070019
- EDN: https://elibrary.ru/EVWZOK
- ID: 664787
Cite item
Abstract
The temperature dependences of the structural parameters of thin films of polystyrene–fullerene C60/C70 nanocomposites with a low content of nanoparticles in the vicinity of the glass transition temperature of the polymer matrix were studied by specular neutron reflectometry in the range 15–150°C. The obtained temperature dependences of film thickness were used to estimate the glass transition temperature of film composites. In the case of films with C60 fullerene, the dependence had a standard form. The glass transition temperature of the composite film was found to decrease compared to the known value for the pure bulk polymer. In the case of films with C70 fullerene, upon transition to high temperatures, a non-monotonic dependence of the film thickness was observed, which hindered the application of the general approach.
Full Text
 
												
	                        About the authors
T. V. Tropin
Joint Institute for Nuclear Research
														Email: avd@nf.jinr.ru
				                					                																			                								
Frank Laboratory of Neutron Physics
Russian Federation, DubnaM. V. Avdeev
Joint Institute for Nuclear Research
														Email: avd@nf.jinr.ru
				                					                																			                								
Frank Laboratory of Neutron Physics
Russian Federation, DubnaV. L. Aksenov
Joint Institute for Nuclear Research
							Author for correspondence.
							Email: avd@nf.jinr.ru
				                					                																			                								
Frank Laboratory of Neutron Physics
Russian Federation, DubnaReferences
- Anandhan S., Bandyopadhyay S. // Nanocomposites Polymers with Analytical Methods / Ed. Cuppoletti J. Rijeka: IntechOpen, 2011. Р. 3. https://doi.org/10.5772/17039
- Barnes K.A., Karim A., Douglas J.F., Nakatani A.I., Gruell H., Amis E.J. // Macromolecules. 2000. V. 33. P. 4177. https://doi.org/10.1021/ma990614s
- Wang C., Guo Z.X., Fu S., Wu W., Zhu D. // Prog. Polym. Sci. 2004. V. 29. P. 1079.
- Russell T.P., Chai Y. // Macromolecules. 2017. V. 50. P. 4597. https://doi.org/10.1016/j.progpolymsci.2004.08.001
- Krishnan R.S., Mackay M.E., Duxbury P.M., Hawker C.J., Asokan S., Wong M.S., Goyette R., Thiyagarajan P. // J. Phys. Condens. Matter. 2007. V. 19. Р. 356003. https://doi.org/10.1088/0953-8984/19/35/356003
- Mackay M.E., Tuteja A., Duxbury P.M., Hawker C.J., Van Horn B., Guan Z., Chen G., Krishnan R.S. // Science. 2006. V. 311. P. 1740. https://doi.org/10.1126/science.1122225
- Holmes M.A., Mackay M.E., Giunta R.K. // J. Nanoparticle Res. 2007. V. 9. P. 753. https://doi.org/10.1007/s11051-006-9118-1
- Karpets M.L., Tropin T.V., Bulavin L.A., Schmelzer J.W.P. // Nucl. Phys. At. En. 2018. V. 19. P. 376.
- Tropin T.V., Karpets M.L., Kosiachkin Y., Aksenov V.L. // J. Surf. Invest.: X-Ray Synchrotron Neutron Tech. 2021. V. 15. P. 768. https://doi.org/10.1134/S1027451021040224
- Tropin T.V., Karpets M.L., Kosiachkin Y. et al. // Fullerenes, Nanotub. Carbon Nanostructures. 2021. V. 29. P. 819. https://doi.org/10.1080/1536383X.2021.1901276
- Yaklin M.A., Duxbury P.M., Mackay M.E. // Soft Matter. 2008. V. 4. P. 2441. https://doi.org/10.1039/B807565D
- Авдеев М.В., Боднарчук В.И., Петренко В.И., Гапон И.В., Томчук А.В., Нагорный А.В., Ульянов В.А., Булавин Л.А., Аксенов В.Л. // Кристаллография. 2017. Т. 62. С. 1014. https://doi.org/10.7868/S0023476117060029
- Nelson A. // J. Appl. Crystallogr. 2006. V. 39. P. 273. https://doi.org/10.1107/S0021889806005073
- Kim J.H., Jang K.L., Ahn K., Yoon T, Lee T.-I., Kim T.-S. // Sci. Rep. 2019. V. 9. P. 1. https://doi.org/10.1038/s41598-019-43592-x
- Keddie J.L., Jones R.A.L., Cory R.A. // Europhys. Lett. 1994. V. 27. P. 59. https://doi.org/10.1209/0295-5075/27/1/011
- Forrest J.A., Dalnoki-Veress K., Stevens J.R., Dutcher J.R. // Phys. Rev. Lett. 1996. V. 77. P. 2002. https://doi.org/10.1103/PhysRevLett.77.2002
- Sanz A., Wong H.C., Nedoma J.A., Douglas J.F., Cabral J.T. // Polymer. 2015. V. 68. P. 47. https://doi.org/10.1016/j.polymer.2015.05.001
- Kropka J.M., Sakal V.G., Green P.F. // Nano Lett. 2008. V. 8. P. 1061. https://doi.org/10.1021/nl072980s
- Wong H.C., Cabral J.T. // J. Phys.: Conf. Ser. 2010. V. 247. P. 12046. https://doi.org/10.1088/1742-6596/247/1/012046
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted



