Ion implantation: nanoporous germanium

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The formation of thin surface amorphous layers of nanoporous Ge with various morphology during low-energy high-dose implantation by metal ions of different masses 63Cu+, 108Ag+ and 209Bi+ of monocrystalline c-Ge substrates were experimentally demonstrated by high-resolution scanning electron microscopy. Analysis of the crystallographic structure of all nanoporous germanium layers obtained was carried out by reflected backscattering electron diffraction. It was shown that at low irradiation energies, in the case of 63Cu+ and 108Ag+, needle-shaped nanoformations were created on the c-Ge surface, constituting a nanoporous Ge layer, while when using 209Bi+, the implanted layer consists of densely packed nanowires. At high energies, the morphology of thin surface layers of nanoporous germanium changes with an increase in the mass of the implanted ions from three-dimensional network to spongy with separate discharged interlacing nanowires. General possible mechanisms of pore formation in Ge during low-energy high-dose ion implantation, such as cluster-vacancy, local thermal microexplosion, and point heating accompanied by melting, are discussed.

About the authors

A. L. Stepanov

Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of the RAS

Author for correspondence.
Email: aanstep@gmail.com
Russian Federation, Kazan

V. I. Nuzhdin

Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of the RAS

Email: aanstep@gmail.com
Russian Federation, Kazan

V. F. Valeev

Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of the RAS

Email: aanstep@gmail.com
Russian Federation, Kazan

А. М. Rogov

Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of the RAS

Email: aanstep@gmail.com
Russian Federation, Kazan

D. А. Konovalov

Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of the RAS

Email: aanstep@gmail.com
Russian Federation, Kazan

References

  1. Степанов А.Л., Нуждин В.И., Рогов А.М., Воробьев В.В. Формирование слоев пористого кремния и германия с металлическими наночастциами. Казань: ФИЦПРЕСС, 2019. 198 c.
  2. Rojas E.G., Hensen J., Carstensen J., Föll H., Brendel R. // RCS Transactions. 2011. V. 33. P. 95. https://www.doi.org/10.1149/1.3553351
  3. Nowak D., Turkiewicz M., Solnica N. // Coatings. 2019. V. 9. P. 120. https://www.doi.org/10.3390/coatings9020120
  4. Zhang Y.-Y., Shin S.-H., Kang H.-J., Jeon S., Hwang S.H., Zhou W., Jeong J.-H., Li X., Kim M. // Appl. Surf. Sci. 2021. V. 546. P. 149083. https://www.doi.org/10.1016/j.apsusc.2021.149083
  5. Степанов А.Л., Нуждин В.И., Валеев В.Ф., Коновалов Д.А., Рогов А.М. // Письма ЖТФ. 2023. Т. 49. № 8. С. 10. https://www.doi.org/10.21883/PJTF.2023.08.55129.19446
  6. Uchida G., Nagai K., Habu Y., Hayashi J., Ikebe Y., Hiramatsu M., Narishige R., Itagaki N., Shiratani M., Setsuhara Y. // Sci. Rep. 2022. V. 12. P. 1742. https://www.doi.org/10.1038/s41598-022-05579-z
  7. Гаврилова Т.П., Хантимеров С.М., Нуждин В.И., Валеев В.Ф., Рогов А.М., Степанов А.Л. // Письма ЖТФ. 2022. Т. 48. № 8. С. 33. https://www.doi.org/10.21883/PJTF.2022.08.52364.19096
  8. Evtugin V.G., Rogov A.M., Nuzhdin V.I., Valeev V.F., Kavetsky T.S., Khalilov R.I., Stepanov A.L. // Vacuum. 2019. V. 165. P. 320. https://www.doi.org/10.1016/j.vacuum.2019.04.044
  9. Koleva M.E., Dutta M., Fukata N. // Mater. Sci. Engineer. B. 2014. V. 187. P. 102. https://www.doi.org/10.1016/j.mseb.2014.05.008
  10. Zegadi R., Lorrain N., Bodiou L., Guendouz M., Ziet L., Charrier J. // J. Opt. 2021. V. 23. P. 35102. https://www.doi.org/10.1088/2040-8986-abdf69
  11. Donovan T.M., Heinemann K. // Phys. Rev. Lett. 1971. V. 27. № 26. P. 1794.
  12. Flamand G., Pooetmans J., Dessein K. // Phys. Stat. Sol. C. 2005. V. 2. № 9. P. 3243. https://www.doi.org/10.1002/pssc.200461130
  13. Shieh J., Chen H.L., Ko T.S., Cheng H.C., Chu T.C. // AdV. Mater. 2004. V. 16. № 13. P. 1121. https://www.doi.org/10.1002/adma.200306541
  14. Kartopu G., Bayliss S.C., Hummel R.E., Ekinci Y. // J. Appl. Phys. 2004. V. 95. № 7. P. 3466. https://www.doi.org/10.1063/1.650919
  15. Foti G., Vitali G., Davies J.A. // Rad. Effects. 1977. V. 32. P. 187.
  16. Wilson I.H. // J. Appl. Phys. 1982. V. 53. № 3. P. 1698.
  17. Rudawski N.G., Jones K.S. // J. Mater. Res. 2013. V. 28. № 13. P. 1633. https://www.doi.org/10.1151/jmr.2013.24
  18. Stepanov A.L., Nuzhdin V.I., Valeev V.F., Rogov A.M., Vorobev V.V. // Vacuum. 2018. V. 152. P. 200. https://www.doi.org/10.1016/j.vacuum.2018.03.030
  19. Рогов А.М., Нуждин В.И., Валеев В.Ф., Романов И.А., Климович И.М., Степанов А.Л. // Российские нанотехнологии. 2018. Т. 13. № 9–10. С. 35.
  20. Rogov A.M., Nuzhdin V.I., Valeev V.F., Stepanov A.L. // Composites Commun. 2020. V. 19. P. 6. https://www.doi.org/10.1016/j.coco.2020.01.002
  21. А.П. Александров Документы и воспоминания. К 100-летию со дня рождения. / Ред. Хлопкин Н.С. М.: ИздАТ, 2003. 456 с.
  22. Ziegler J.F., Ziegler M.D., Biersack J.P. // Nucl. Instr. Meeth. Phys. Res. B. 2010. V. 268. P. 1818. https://www.doi.org/10.1016/j.nimb.2010.02.091
  23. Nastasi M., Mayer J.W., Hirvonen J.K. Ion-solid interactions. Cambridge: Cambridge UniV. Press, 1996. 540 p.
  24. Darby B.L., Yates B.R., Rudawski N.G., Jones K.S., Elliman R.G. // Thin Solid Films. 2011. V. 519. P. 5962. https://www.doi.org/10.1016/j.tsf.2011.03.040
  25. Cawthorne C., Fulton E.J. // Nature. 1967. V. 216. № 11. P. 576.
  26. Romano L., Impellizzeri G., Tomasello M.V., Giannazzo F., Spinella C., Grimaldi M.G. // J. Appl. Phys. 2010. V. 107. P. 84314.
  27. Ghaly M., Nordlund K., Averback R.S. // Philosoph. Magazin. 1999. V. 79. № 4. P. 795.
  28. Герасименко Н.Н., Пархоменко Ю.Н. Кремний — материал наноэлектроники. М.: Техносфера, 2007. 352 с.
  29. Kudriavtsev Y., Hernandez-Zanabria A., Salinas C., Asomoza R. // Vacuum. 2020. V. 177. P. 109393. https://www.doi.org/10.1016/j.vacuum.2020.109393
  30. Kudriavtsev Y., Asomoza R., Hernandez A., Kazantsev D.Y., Ber B.Y., Gorokhov A.N. // J. Vac. Sci. Technol. A. 2020. V. 38. № 5. P. 53203. https://www.doi.org/10.1116/6.0000262

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences