Accumulation and Erase of Radiation-Induced Charge in MOS Structures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It is shown that when a MOS (metal–oxide–semiconductor) structure is simultaneously exposed to radiation and high-field injection of electrons, part of the radiation-induced positive charge can be erased when interacting with injected electrons, and the density of surface states can increase. These phenomena must be taken into account when operating MOS radiation sensors in high-field charge injection modes. High-field injection modes used for post-radiation erase of positive charge in MOS sensors are analyzed. It has been established that to annihilate one hole (radiation-induced positive charge), it is necessary to inject (0.5–2) × 104 electrons into the gate dielectric; the magnitude of the electric field has almost no effect on the process of erasing the radiation-induced charge.

About the authors

D. V. Andreev

Bauman Moscow State Technical University, Kaluga Branch

Author for correspondence.
Email: dmitrii_andreev@bmstu.ru
Russian Federation, Kaluga

References

  1. Holmes-Siedle A., Adams L. // Radiat. Phys. Chem. 1986. V. 28. P. 235. https://doi.org/10.1016/1359-0197(86)90134-7
  2. Pejović M.M. // Radiat. Phys. Chem. 2017. V. 130. P. 221. https://doi.org/10.1016/j.radphyschem.2016.08.027
  3. Ristic G.S., Vasovic N.D., Kovacevic M., Jaksic A.B. // Nucl. Instrum. Methods Phys. Res. B. 2011. V. 269. P. 2703. https://doi.org/ 10.1016/j.nimb.2011.08.015
  4. Lipovetzky J., Holmes–Siedle A., Inza M.G., Carbonetto S., Redin E., Faigon A. // IEEE Trans. Nucl. Sci. 2012. V. 59. P. 3133. https://doi.org/10.1109/TNS.2012.2222667
  5. Ristic G.S., Ilic S.D., Andjelkovic M.S., Duane R., Palma A.J., Lalena A.M., Krstic M.D., Jaksic A.B. // Nucl. Instrum. Methods Phys. Res. A. 2022. V. 1029. P. 166473. https://doi.org/10.1016/j.nima.2022.166473
  6. Siebel O.F., Pereira J.G., Souza R.S., Ramirez-Fernandez F.J., Schneider M.C., Galup-Montoro C. // Radiat. Meas. 2015. V. 75. P. 53. https://doi.org/ 10.1016/j.radmeas.2015.03.004
  7. Kulhar M., Dhoot K., Pandya A. // IEEE Trans. Nucl. Sci. 2019. V. 66. P. 2220. https://doi.org/ 10.1109/TNS.2019.2942955
  8. Camanzi B., Holmes-Siedle A.G. // Nature Mater. 2008. V. 7. P. 343. https://doi.org/10.1038/nmat2159
  9. Oldham T.R., McLean F.B. // IEEE Trans. Nucl. Sci. 2003. V. 50. P. 483. https://doi.org/10.1109/TNS.2003.812927
  10. Schwank J.R., Shaneyfelt M.R., Fleetwood D.M., Felix J.A., Dodd P.E., Paillet P., Ferlet-Cavrois V. // IEEE Trans. Nucl. Sci. 2008. V. 55. P. 1833. https://doi.org/10.1109/TNS.2008.2001040
  11. Andreev D.V., Bondarenko G.G., Andreev V.V., Stolya-rov A.A. // Sensors. 2020. V. 20. P. 2382. https://doi.org/10.3390/s20082382
  12. Andreev V.V., Maslovsky V.M., Andreev D.V., Stolyarov A.A. // Proc. SPIE. 2019. V. 11022. P. 1102207. https://doi.org/10.1117/12.2521985
  13. Andreev V.V., Bondarenko G.G., Andreev D.V., Stolyarov A.A. // J. Contemp. Phys. (Armenian Acad. Sci.). 2020. V. 55. P. 144. https://doi.org/10.3103/S106833722002005X
  14. Andreev D.V., Bondarenko G.G., Andreev V.V., Maslovsky V.M., Stolyarov A.A. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2020. V. 14. P. 260. https://doi.org/10.1134/S1027451020020196
  15. Andreev D.V., Bondarenko G.G., Andreev V.V. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2023. V. 17. P. 48. https://doi.org/10.1134/S1027451023010056
  16. Lipovetzky J., Redin E.G., Faigon A. // IEEE Trans. Nucl. Sci. 2007. V. 54. P. 1244. https://doi.org/10.1109/TNS.2007.895122
  17. Peng L., Hu D., Jia Y., Wu Y., An P., Jia G. // IEEE Trans. Nucl. Sci. 2017. V. 64. P. 2633. https://doi.org/10.1109/TNS.2017.2744679
  18. Strong A.W., Wu E.Y., Vollertsen R., Sune J., Rosa G.L., Rauch S.E., Sullivan T.D. Reliability Wearout Mechanisms in Advanced CMOS Technologies. Wiley-IEEE Press, 2009. 624 p.
  19. Palumbo F., Wen C., Lombardo S., Pazos S., Aguirre F., Eizenberg M., Hui F., Lanza M. // Adv. Funct. Mater. 2019. V. 29. P. 1900657. https://doi.org/10.1002/adfm.201900657
  20. Wu E.Y. // IEEE Trans. Electron Devices. 2019. V. 66. P. 4523. https://doi.org/10.1109/TED.2019.2933612
  21. Andreev V.V., Bondarenko G.G., Maslovsky V.M., Stolyarov A.A., Andreev D.V. // Phys. Stat. Sol. C. 2015. V. 12. P. 299. https://doi.org/10.1002/pssc.201400119
  22. Andreev D.V., Maslovsky V.M., Andreev V.V., Stolyarov A.A. // Phys. Stat. Sol. A. 2022. V. 219. P. 2100400. https://doi.org/10.1002/pssa.202100400
  23. Arnold D., Cartier E., DiMaria D.J. // Phys. Rev. B. 1994. V. 49. P. 10278. https://doi.org/10.1103/PhysRevB.49.10278
  24. Lai S.K. // J. Appl. Phys. 1983. V. 54. P. 2540. https://doi.org/10.1063/1.332323
  25. Cerbu F., Madia O., Andreev D.V., Fadida S., Eizenberg M., Breuil L., Lisoni J.G., Kittl J.A., Strand J., Shluger A.L., Afanas'ev V.V., Houssa M., Stesmans A. // Appl. Phys. Lett. 2016. V. 108. P. 222901. https://doi.org/10.1063/1.495271
  26. Fleetwood D.M. // IEEE Trans. Nucl. Sci. 2020. V. 67. P. 1216. https://doi.org/10.1109/TNS.2020.2971861
  27. Zebrev G.I., Orlov V.V., Gorbunov M.S., Drosdetsky M.G. // Microelectron. Reliab. 2018. V. 84. P. 181. https://doi.org/10.1016/j.microrel.2018.03.014

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences