Migration of Chromium on the Silicon Oxide Surface under the Strong Electric Field

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Migration of chromium, which acts as an adhesive material for planar electrodes of a MEMS switch, over the surface of a thermally oxidized silicon wafer is demonstrated. Voltage pulses lead to the formation of chromium and carbon nanostructures on the driving electrode and their growth towards the signal electrode. Over time, the structures reach micron sizes and cover the interelectrode gap. Migration is activated by an electric field of about 108 V/m. The first structures appear after applying 102–105 pulses, but the process accelerates as they grow. For platinum electrodes, migration is faster and requires lower voltage compared to gold electrodes. Material transfer occurs not only in the gap between the electrodes, but also on the SiO2 surface around the positive electrode. The material also moves under the Pt and Au films, peeling them off from the substrate. The described phenomena can damage electrostatically actuated MEMS switches and other devices that use high electric fields.

Texto integral

Acesso é fechado

Sobre autores

I. Uvarov

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS

Autor responsável pela correspondência
Email: i.v.uvarov@bk.ru
Rússia, Yaroslavl, 150067

L. Mazaletsky

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS

Email: i.v.uvarov@bk.ru
Rússia, Yaroslavl, 150067

Bibliografia

  1. Rebeiz G.M. RF MEMS: Theory, Design, and Technology. Hoboken, New Jersey: John Wiley & Sons, Inc., 2003. 512 p.
  2. Cao T., Hu T., Zhao Y. // Micromachines. 2020. V. 11. Р. 694. doi: 10.3390/mi11070694
  3. Kurmendra, Kumar R. // Microsyst. Technol. 2021. V. 27. P. 2525. doi: 10.1007/s00542-020-05025-y
  4. Rebeiz G.M., Patel C.D., Han S.K., Ko C.-H., Ho K.M.J. // IEEE Microw. Mag. 2013. V. 14. P. 57. doi: 10.1109/MMM.2012.2226540
  5. Patel C.D., Rebeiz G.M. // IEEE Trans. Microw. Theory Techn. 2011. V. 59. P. 1230. doi: 10.1109/TMTT.2010.2097693
  6. Klein N., Gafni H. // IEEE Trans. Electron Dev. 1966. V. ED-13. P. 281. doi: 10.1109/T-ED.1966.15681
  7. Sze S.M. // J. Appl. Phys. 1967. V. 38. P. 2951. doi: 10.1063/1.1710030
  8. He M., Lu T.-M. Metal-Dielectric Interfaces in Gigascale Electronics. New York, NY: Springer Science+Business Media, LLC, 2012. 149 p.
  9. Uvarov I.V., Kupriyanov A.N. // Russ. Microelectron. 2018. V. 47. P. 307. doi: 10.1134/S1063739718050086
  10. Uvarov I.V. // Microelectron. Reliab. 2021. V. 125. Р. 114372. doi: 10.1016/j.microrel.2021.114372
  11. Lide D.R. CRC Handbook of Chemistry and Physics. Boca Raton: CRC Press/Taylor and Francis, 2009. 2760 p.
  12. Groudeva-Zotova S., Vitchev R.G., Blanpain B. // Surf. Interface Anal. 2000. V. 30. P. 544. doi: 10.1002/1096-9918(200008)30:1<544::AID-SIA814>3.0.CO;2-7
  13. Marechal N., Quesnel E., Pauleau Y. // J. Mater. Res. 1994. V. 9. P. 1820. doi: 10.1557/JMR.1994.1820
  14. McBrayer J.D., Swanson R.M., Sigmon T.W. // J. Electrochem. Soc. 1986. V. 133. P. 1242. doi: 10.1149/1.2108827
  15. Valov I., Waser R., Jameson J.R., Kozicki M.N. // Nanotechnology. 2011. V. 22. Р. 254003. doi: 10.1088/0957-4484/22/25/254003
  16. Tappertzhofen S., Mundelein H., Valov I., Waser R. // Nanoscale. 2012. V. 4. P. 3040. doi: 10.1039/C2NR30413A
  17. Tappertzhofen S., Menzel S., Valov I., Waser R. // Appl. Phys. Lett. 2011. V. 99. Р. 203103. doi: 10.1063/1.3662013
  18. Thermadam S.P., Bhagat S.K., Alford T.L., Sakaguchi Y., Kozicki M.N., Mitkova M. // Thin Solid Films. 2010. V. 518. P. 3293. doi: 10.1016/j.tsf.2009.09.021
  19. Yao J., Zhong L., Zhang Z., He T., Jin Z., Wheeler P.J., Natelson D., Tour J.M. // Small. 2009. V. 5. P. 2910. doi: 10.1002/smll.200901100
  20. Uvarov I.V., Kupriyanov A.N. // Microsyst. Technol. 2019. V. 25. P. 3243. doi: 10.1007/s00542-018-4188-4
  21. Jiang N., Silcox J. // J. Appl. Phys. 2000. V. 87. P. 3768. doi: 10.1063/1.372412
  22. Zhang X., Adelegan O.J., Yamaner F.Y., Oralkan O. // J. Microelectromech. Syst. 2018. V. 27. P. 190. doi: 10.1109/JMEMS.2017.2781255
  23. Shekhar S., Vinoy K.J., Ananthasuresh G.K. // J. Micromech. Microeng. 2018. V. 28. Р. 075012. doi: 10.1088/1361-6439/aaba3e
  24. Liu Y., Bey Y., Liu X. // IEEE Trans. Microw. Theory Techn. 2016. V. 64. P. 3151. doi: 10.1109/TMTT.2016.2598170
  25. Song Y.-H., Kim M.-W., Lee J.O., Ko S.D., Yoon J.B. // J. Microelectromech. Syst. 2013. V. 22. P. 846. doi: 10.1109/JMEMS.2013.2248125
  26. Song Y.-H., Han C.-H., Kim M.-W., Lee J.O., Yoon J.-B. // J. Microelectromech. Syst. 2012. V. 21. P. 1209. doi: 10.1109/JMEMS.2012.2198046

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Schematic representation of the switch electrodes.

Baixar (96KB)
3. Fig. 2. SEM images of platinum (a) and gold (b) electrodes obtained at an angle of 20° to the substrate plane.

Baixar (712KB)
4. Fig. 3. Structures in the gap between platinum electrodes formed as a result of 104 pulses, top view. White dots indicate the areas of energy dispersive analysis.

Baixar (381KB)
5. Fig. 4. Large structures formed between platinum electrodes as a result of 2 × 104 pulses. The SEM image was obtained at an angle of 20° to the substrate plane.

Baixar (346KB)
6. Fig. 5. General view of the connecting line of the control electrode after 104 pulses (a). Magnified SEM image of the surface area highlighted by a rectangle (b). Dots indicate areas of energy dispersive analysis.

Baixar (823KB)
7. Fig. 6. Time dependence of the control voltage and current flowing through the platinum electrodes.

Baixar (100KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024