Self-Forming Silicon Nitride Nanomask and Its Applications
- 作者: Smirnov V.K.1,2, Kibalov D.S.1,2, Lepshin P.A.2, Zhuravlev I.V.2, Smirnova G.F.2
-
隶属关系:
- Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS
- Quantum Silicon LLC
- 期: 编号 11 (2024)
- 页面: 69-80
- 栏目: Articles
- URL: https://ruspoj.com/1028-0960/article/view/681226
- DOI: https://doi.org/10.31857/S1028096024110088
- EDN: https://elibrary.ru/REOWLI
- ID: 681226
如何引用文章
详细
Self-forming wave-ordered structure arises on the surface of single-crystal or amorphous silicon during its sputtering with an inclined beam of nitrogen ions. The wave-ordered structure is a solid nanomask, a dense array of silicon nitride nanostripes with a period in the range 30–90 nm. The induced spatial coherence of the nanomask due to the formation of sharp geometric boundaries on silicon surface in the areas of ion bombarded is considered. Based on the nanomask and etching processes (wet and dry), various nanostructures are formed, which are used in different high technologies. Prototypes of solar cells, nanowire grid polarizers, and nanostructured silicon substrates for surface-enhanced Raman spectroscopy have been created. The results of a study of the initial stages of lysozyme protein crystallization on nanostructured silicon substrates are presented.
全文:

作者简介
V. Smirnov
Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS; Quantum Silicon LLC
编辑信件的主要联系方式.
Email: smirnov@wostec.ru
俄罗斯联邦, Yaroslavl, 150067; Moscow, 107078
D. Kibalov
Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS; Quantum Silicon LLC
Email: smirnov@wostec.ru
俄罗斯联邦, Yaroslavl, 150067; Moscow, 107078
P. Lepshin
Quantum Silicon LLC
Email: smirnov@wostec.ru
俄罗斯联邦, Moscow, 107078
I. Zhuravlev
Quantum Silicon LLC
Email: smirnov@wostec.ru
俄罗斯联邦, Moscow, 107078
G. Smirnova
Quantum Silicon LLC
Email: smirnov@wostec.ru
俄罗斯联邦, Moscow, 107078
参考
- Navez M., Sella C., Chaperot D. // C.R. Acad. Sci. Paris. 1962. V. 254. P. 240.
- Carter G., Vishnyakov V., Nobes M.J. // Nucl. Instrum. Methods Phys. Res. B. 1996. V. 115. P. 440. https://doi.org/10.1016/S0168-583X(95)01522-1
- Erlebacher J.D., Aziz M.J., Chason E., Sinclair M.B., Floro J.A. // Phys. Rev. Lett. 1999. V. 82. № 11. P. 2330. https://doi.org/10.1103/PhysRevLett.82.2330
- Elst K., Vandervorst J., Alay J., Snauwaer J., Hellemans L. // J. Vac. Sci. Technol. B. 1993. V. 11. № 6. P. 1968 https://doi.org/10.1116/1.586529
- Macko S., Frost F., Ziberi B., Forster D.F., Michely T. // Nanotechnology. 2010. V. 21. № 8. P. 085301. https://doi.org/10.1088/0957-4484/21/8/085301
- Vajo J.J., Doty R.E., Cirlin E.H. // J. Vac. Sci. Technol. A. 1996. V. 14. № 5. P. 2709. https://doi.org/10.1116/1.580192
- Alkemade P.F.A., Jiang Z.X. // J. Vac. Sci. Technol. B. 2001. V. 19. № 5. P. 1699. https://doi.org/10.1116/1.1389903
- Wittmaack K. // Surf. Sci. 1999. V. 419. P. 249.
- Смирнова М.А., Бачурин В.И., Чурилов А.Б. // Научно-технические ведомости СПбГПУ. Физико-математические науки. 2022. Т. 15. № 3.3. С. 8. https://doi.org/10.18721/JPM.153.301
- Kataoka Y., Wittmaack K. // Surf. Sci. 1999. V. 424. P. 299.
- Smirnov V.K., Kibalov D.S., Krivelevich S.A., Lepshin P.A., Potapov E.V., Yankov R.A., Skorupa W., Makarov V.V., Danilin A.B. // Nucl. Instrum. Methods Phys. Res. B. 1999. V. 147. P. 310. doi: 10.1016/S0168-583X(98)00610-7
- Смирнов В.К., Кибалов Д.С. // Тр. XIX междунар. конф. “Взаимодействие ионов с поверхностью ВИП-2009”. Звенигород, 2009. Т. 1. С. 36.
- Rudy A.S., Smirnov V.K. // Nucl. Instrum. Methods Phys. Res. B. 1999. V. 159. P. 52. https://doi.org/ 10.1016/S0168-583X(99)00490-5
- Bachurin V.I., Lepshin P.A., Smirnov V.K. // Vacuum. 2000. V. 56. № 4. P. 241. https://doi.org/10.1016/S0042-207X(99)00194-3
- Reisner W., Morton K.J., Riehn R., Wang Y.M., Yu Z., Rosen M., Sturm J.C., Chou S.Y., Frey E., Austin R.H. // Phys. Rev. Lett. 2005. V. 94. № 19–20. P. 196101. https://doi.org/ 10.1103/PhysRevLett.94.196101
- Унтила Г.Г., Кост Т.Н., Чеботарева А.Б., Белоусов М.Э., Самородов В.А., Поройков А.Ю., Тимофеев М.А., Закс М.Б., Ситников А.М., Солодуха О.И. // Физика и техника полупроводников. 2011. Т. 45. Вып. 3. С. 379.
- Унтила Г.Г., Кост Т.Н., Чеботарева А.Б., Закс М.Б., Ситников А.М., Солодуха О.И. // Физика и техника полупроводников. 2005. Т. 39. Вып. 11. С. 1393.
- Beard M.C., Knutsen K.P., Yu P., Luther J.M., Song Q., Metzger W.K., Ellingson R.J., Nozik A.J. // Nano Lett. 2007. V. 7. № 8. P. 2506. https://doi.org/10.1021/nl071486l
- Nozik A.J. // Chem. Phys. Lett. 2008. V. 457. P. 3. https://doi.org/10.1016/j.cplett.2008.03.094
- Jacobs S., Levy M., Marchena E., Honsberg C.B. // Proc. 33rd IEEE Photovoltaic Specialists Conference. San Diego, 2008. P. 4922718. https://doi.org/10.1109/PVSC.2008.4922718
- Ahn S.W., Lee K.D., Kim J.S., Kim S.H., Park J.D., Lee S.H., Yoon P.W. // Nanotechnology. 2005. V. 16. P. 1874. https://doi.org/10.1088/0957-4484/16/9/076
- Kim S.H., Park J.-D., Lee K.-D. // Nanotechnology. 2006. V. 17. P. 4436. https://doi.org/10.1088/0957-4484/17/17/025
- George M.C., Wang B., Petrova R., Li H., Bergquist J. // Proc. SPIE. 2013. V. 8704. P. 87042E. https://doi.org/10.1117/12.2016221
- Pelletier V., Asakawa K., Wu M., Adamson D.H., Register R.A., Chaikin P.M. // Appl. Phys. Lett. 2006. V. 88. P. 211114. https://doi.org/10.1063/1.2206100
- Papalia J.M., Adamson D.H., Chaikin P.M., Register R.A. // J. Appl. Phys. 2010. V. 107. P. 084305. https://doi.org/10.1063/1.3354099
- Weber T., Kroker S., Käsebier T., Kley E.-B., Tünnermann A. // Appl. Opt. 2014. V. 53. № 34. P. 8140. https://doi.org/10.1364/AO.53.008140
- Siefke T., Kroker S., Pfeiffer K., Puffky O., Dietrich K., Franta D., Ohlídal I., Szeghalmi A., Kley E.-B., Tünnermann A. // Adv. Opt. Mater. 2016. V. 4. № 11. P. 1780. https://doi.org/ 10.1002/adom.201600250
- Schmidt M.S., Boisen A., Hübner J. // Proc. 8th IEEE Conference on Sensors. Christchurch, New Zealand, 2009. P. 1763. https://doi.org/10.1109/ICSENS.2009.5398468
- Кукушкин В.И., Гришина Я.В., Егоров С.В., Соловьев В.В., Кукушкин И.В. // Письма в ЖЭТФ. 2016. Т. 103. Вып. 8. С. 572. https://doi.org/10.7868/S0370274X16080038
- Zhang C., Jiang S.Z., Yang C., Li C.H., Huo Y.Y., Liu X.Y., Liu A.H., Wei Q., Gao S.S., Gao X.G., Man B.Y. // Sci. Rep. 2016. V. 6. P. 25243. https://doi.org/ 10.1038/srep25243
- Bandarenka H.V., Girel K.V., Zavatski S.A., Panarin A., Terekhov S.N. // Materials. 2018. V. 11. № 5. P. 852. https://doi.org/10.3390/ma11050852
- Nanev C.N., Saridakis E., Chayen N.E. // Sci. Rep. 2017. V. 7. P. 35821. https://doi.org/10.1038/srep35821
- Krauss I.R., Merlino A., Vergara A., Sica F. // Int. J. Mol. Sci. 2013. V. 14. P. 11643. https://doi.org/10.3390/ijms140611643
- Pechkova E., Bragazzi N.L., Nicolini C. // NanoWorld J. 2015. V. 1. № 2. P. 46. https://doi.org/10.17756/nwj.2015-006
- Pechkova E., Nicolini C. // NanoWorld J. 2018. V. 8. № 8. P. 48. https://doi.org/10.17756/nwj.2018-060
- Бойкова А.С., Дьякова Ю.А., Ильина К.Б., Марченкова М.А., Серегин А.Ю., Просеков П.А., Волковский Ю.А., Писаревский Ю.В., Ковальчук М.В. // Кристаллография. 2018. Т. 63. № 5. С. 703. https://doi.org/10.1134/S0023476118050065
- Pechkova E., Sartore M., Giacomelli L., Nicolini C. // Rev. Sci. Instrum. 2007. V. 78. P. 093704. https://doi.org/10.1063/1.2785032
- Дьякова Ю.А., Ковальчук М.В. // Кристаллография. 2022. Т. 67. № 5. С. 831. https://doi.org/10.31857/S0023476122050034
- Попов А.М., Дороватовский П.В., Мамичев Д.А., Марченкова М.А., Николаева А.Ю. // Кристаллография. 2019. Т. 64. № 2. С. 259. https://doi.org/10.1134/S002347611902022X
补充文件
