Control of Mask Erosion and Correction of Structure Profile in an Adapted Process of Deep Reactive Ion Etching of Silicon
- Авторлар: Morozov O.V.1
-
Мекемелер:
- Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS
- Шығарылым: № 11 (2024)
- Беттер: 87-98
- Бөлім: Articles
- URL: https://ruspoj.com/1028-0960/article/view/681228
- DOI: https://doi.org/10.31857/S1028096024110105
- EDN: https://elibrary.ru/REICAL
- ID: 681228
Дәйексөз келтіру
Аннотация
The paper presents a new approach to optimizing the cyclic procedure of deep reactive ion etching (DRIE) of silicon. The etching parameters were adjusted based on direct measurements of the rates of deposition and etching processes in a cycle on the surface of oxidized silicon using a laser interferometer. A high-quality etching profile with minimal erosion of the SiO2 mask (maximum process selectivity) was achieved by adapting the three-stage DRIE process according to the measured duration of polymer removal at the bottom of the grooves in silicon. The possibilities of correcting the profile shape by changing the DRIE parameters during the etching process are presented. As a result of optimization, a recipe was obtained for etching grooves 30 µm wide to a depth of 350 µm with a wall angle of 0.36°, at a process rate and selectivity of 3.4 µm/min and ~400, respectively. The adapted recipe was successfully applied in the manufacturing technology of the sensitive element of a micromechanical gyroscope.
Толық мәтін

Авторлар туралы
O. Morozov
Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS
Хат алмасуға жауапты Автор.
Email: moleg1967@yandex.ru
Ресей, Yaroslavl, 150067
Әдебиет тізімі
- Wu B., Kumar A., Pamarthy S. // J. Appl. Phys. 2010 V. 108. Art. No. 051101. https://doi.org/10.1063/1.3474652
- Huff M. // Micromachines. 2021. V. 12. No. 8. P. 991. https://doi.org./10.3390/mi12080991
- Tang Y., Najafi K. // 2016. IEEE International Symposium on Inertial Sensors and Systems. https://doi.org./10.1109/ISISS.2016.7435562
- Tang Y., Najafi K. // J. Microelectromech. Syst. 2018. V. 28. No. 1, P. 131-142. https://doi.org./10.1109/JMEMS.2018.2884524
- Jia J., Ding X., Qin Z., et.al. // Measurement. 2021. V. 182. 109704. https://doi.org./10.1016/j.measurement.2021.109704
- Challoner A.D., Ge H.H., Liu J.Y. // 2014. IEEE/ION Position, Location and Navigation Symposium. https://doi.org./10.1109/PLANS.2014.6851410
- Schwartz D.M., Kim D., Stupar P., et.al. // J. Microelectromech. Syst. 2015. V.24. No. 3. P. 545–555. https://doi.org./10.1109/JMEMS.2015.2393858
- Li Q., Xiao D., Zhou X. et al. // Microsyst. Nanoeng. 2018. V. 4. Art. No. 32. https://doi.org./10.1038/s41378-018-0035-0
- Trusov A.A., Schofield A.R., Shkel A.M. // Sens. Actuator. A. Phys. 2011. V. 165. P. 26–34. https://doi.org./10.1016/j.sna.2010.01.007
- Askari S., Asadian M.H., Shkel A.M. // Micromachines, 2021. V. 12. No. 3. P. 266. https://doi.org./10.3390/mi12030266
- Weinberg M.S., Kourepenis A. // J. Microelectromech. Syst. 2006. V. 15, No. 3, P. 479–491. https://doi.org./10.1109/JMEMS.2006.876779
- Li J., Liu A.Q., Zhang Q.X. // Sensors and Actuators A. 2006. V. 125. P. 494–503. https://doi.org./10.1016/j.sna.2005.08.002
- Chen K.-S., Ayon A.A., Zhang X., Spearing S.M. // J. Microelectromech. Syst. 2002. V. 11. No. 3. P. 264–275. https://doi.org./10.1109/JMEMS.2002.1007405
- Yeom J., Wu Y., Selby J.C., Shannon M.A. // J. Vac. Sci. Technol. B. 2005 V. 23. Art. No. 2319. https://doi.org./10.1116/1.2101678
- Meng L., Yan J. // Micromech. Microeng. 2015. V. 25. Art. No. 035024. https://doi.org./10.1088/0960-1317/25/3/035024
- Xu T., Tao Z., Li H., et.al. // Advances in Mechanical Engineering. 2017. V. 9. No. 12. P. 1–19. https://doi.org./10.1177/1687814017738152
- Tang Y., Sandoughsaz A., Owen K.J., Najafi K. // J. Microelectromech. Syst. 2018. V. 27. No. 4. P. 686. https://doi.org./10.1109/JMEMS.2018.2843722
- Chang B. Leussink P. Jensen F. et al. // Microelectron. Eng. 2018. V. 191, P. 77. https://doi.org./10.1016/j.mee.2018.01.034
- Lips B. Puers R. // J. Phys.: Conf. Ser., 2016. V. 757. Art. No. 012005. https://doi.org./10.1088/1742-6596/757/1/012005
- Gerlt M.S., Läubli N.F., Manser M. et al. // Micromachines. 2021. V. 12. No. 5. P. 542. https://doi.org./10.3390/mi12050542
- Kim T., Lee J. Optimization of deep reactive ion etching for microscale silicon hole arrays with high aspect ratio // Micro and Nano Syst. Lett. 2022. V. 10. No. 12. P. 1–7. https://doi.org./10.1186/s40486-022-00155-6
- Abdolvand R., Ayazi F. // Sens. Actuator. A. Phys. 2008 V. 144. No. 1. P. 109–116. https://doi.org./10.1016/j.sna.2007.12.026
- Морозов О.В. // Известия РАН. Серия физическая. 2024. Т. 88. № 4. Morozov O.V. // Bulletin of the Russian Academy of Sciences: Physics. 2024. V. 88, No. 4, P. 447–453. https://doi.org./10.1134/S1062873823706050
- Morozov O., Postnikov A., Kozin I., et.al. // Proc. SPIE 8700, 2012 International Conference Micro- and Nano-Electronics 2012, 87000T (2013). https://doi.org./10.1117/12.2016784
- Chutani R.K., Hasegawa M., Maurice V., et.al. // Sens. Actuator. A. Phys. 2014. V. 208. P. 66–72. https://doi.org./10.1016/j.sna.2013.12.031
- Ефремов А.М., Мурин Д.Б., Kwon K.-H. // Микроэлектроника. 2020. Т. 49. № 3. С. 170–178. https://doi.org./10.31857/S0544126920020039. Efremov A.M., Murin D.B., Kwon K.-H. // Russian Microelectronics, 2020, V. 49, No. 3, P. 157–165. https://doi.org./10.1134/S1063739720020031
- Мяконьких А.В., Кузьменко В.О., Ефремов А.М., Руденко К.В. // Микроэлектроника, 2022, Т. 51, № 6, С. 505–512. https://doi.org./10.31857/S0544126922700090. Miakonkikh A.V., Kuzmenko V.O., Efremov A.M., Rudenko K.V. // Russian Microelectronics, 2022, V. 51, No. 6, P. 505–511. https://doi.org./10.1134/S1063739722700032
- Saraf I.R., Goeckner M.J., Goodlin B.E., et.al. // J. Vac. Sci. Technol. B. 2013. V. 31. Art. No. 011208. https://doi.org./10.1116/1.4769873
- Sant S.P., Nelson C.T., Overzet L.J., Goeckner M.J. // J. Vac. Sci. Technol. A. 2009. V. 27. No. 4. P. 631–642. https://doi.org./10.1116/1.3136850
- Lotters J. Model-Based Multi-Gas/Multi-Range Mass Flow Controllers With Single Gas Calibration and Tuning // Gases and Instrumentation. 2008. http://tuncell.com/userfiles/modelbased_multigasmultirange_mfcs.pdf
- Амиров И.И., Алов Н.В. // Химия высоких энергий. 2006. Т. 40. № 4. С. 311. Amirov I.I., Alov N.V. // High Energy Chemistry. 2006. V. 40. No. 4. P. 267–272. https://doi.org./10.1134/S0018143906040114
- Руденко К.В., Мяконьких А.В., Орликовский А.А. // Микроэлектроника. 2007. Т. 36. № 3. С. 206. Rudenko K.V., Myakon’kikh A.V., Orlikovsky A.A. // Russian Microelectronics. 2007. V. 36. No. 3. P. 179–192. https://doi.org./10.1134/S1063739707030079
- Amirov I.I., Gorlachev E.S., Mazaletskiy L.A., et.al. // J. Phys. D: Appl. Phys. 2018. V. 51. No. 11. P. 267. https://doi.org./10.1088/1361-6463/aaacbe
- Морозов О.В., Амиров И.И. // Микроэлектроника. 2007. Т. 36. № 5. С. 380. Morozov O.V., Amirov I.I. // Russian Microelectronics, 2007, V. 36, No. 5, P. 333–341. https://doi.org./10.1134/S1063739707050071
- Lai L., Johnson D., Westerman R. // J. Vac. Sci. Technol. A. 2006. V. 24. P. 1283. https://doi.org./10.1116/1.2172944
- Craigie C.J.D., Sheehan T., Johnson V.N., et.al. // J. Vac. Sci. Technol. B. 2002. V. 20(6). P. 2229–2232. https://doi.org./10.1116/1.1515910
- Choi J.W., Loh W.L., Praveen S.K., et. al. // 2013. J. Micromech. Microeng. V. 23. Art. No. 065005. https://doi.org./10.1088/0960-1317/23/6/065005
- Min J.-H., Lee G.-R., Lee J.-K., Moon S.H. // 2004. J. Vac. Sci. Technol. B.V. 22. No. 6. P. 2580–2588. https://doi.org./10.1116/1.1808746
- Min J.-H., Lee G.-R., Lee J.-K., Moon S.H. // 2004. J. Vac. Sci. Technol. B. 2004. V. 22. No. 3. P. 893–901. https://doi.org./10.1116/1.1695338
Қосымша файлдар
