Atomistic Simulation of Segregation in Ternary Pt–Pd–Ni Nanoalloy
- Authors: Nepsha N.I.1, Sdobnyakov N.Y.1, Samsonov V.M.1, Talyzin I.V.1, Kolosov A.Y.1, Zhigunov D.V.1, Savina K.G.1, Romanov A.A.1
-
Affiliations:
- Tver State University
- Issue: No 11 (2024)
- Pages: 116-124
- Section: Articles
- URL: https://ruspoj.com/1028-0960/article/view/681231
- DOI: https://doi.org/10.31857/S1028096024110137
- EDN: https://elibrary.ru/RDWHET
- ID: 681231
Cite item
Abstract
The results of comparative atomistic simulation are presented for segregation and thermally induced structural transformations (melting/crystallization) in binary Pt–Pd nanoalloys and ternary Pt–Pd–Ni nanoparticles, where Ni (20 at. %) acted as a doping component. Atomistic simulation was carried out using an integrated approach combining molecular dynamics and Monte Carlo methods. In addition, two independently developed computer programs, LAMMPS and Metropolis, two different parameterizations of potentials corresponding to the embedded atom method, as well as an alternative force field, the tight-binding potential, were used for the simulation. Surface segregation of Pd was observed in both binary and ternary nanoparticles consisting of 2500 and 5000 atoms. Most noticeably, doping affected structural segregation, inducing a transition from a nanocrystal consisting of several fcc grains to a nanocluster with approximately pentagonal symmetry. It has been established that the size effect is more noticeable for parameters of the melting–crystallization hysteresis than for the structural segregation patterns, i.e., dividing the nanoparticle into areas corresponding to different crystal structures and the segregation of components.
Full Text

About the authors
N. I. Nepsha
Tver State University
Email: nsdobnyakov@mail.ru
Russian Federation, Tver, 170002
N. Yu. Sdobnyakov
Tver State University
Author for correspondence.
Email: nsdobnyakov@mail.ru
Russian Federation, Tver, 170002
V. M. Samsonov
Tver State University
Email: nsdobnyakov@mail.ru
Russian Federation, Tver, 170002
I. V. Talyzin
Tver State University
Email: nsdobnyakov@mail.ru
Russian Federation, Tver, 170002
A. Yu. Kolosov
Tver State University
Email: nsdobnyakov@mail.ru
Russian Federation, Tver, 170002
D. V. Zhigunov
Tver State University
Email: nsdobnyakov@mail.ru
Russian Federation, Tver, 170002
K. G. Savina
Tver State University
Email: nsdobnyakov@mail.ru
Russian Federation, Tver, 170002
A. A. Romanov
Tver State University
Email: nsdobnyakov@mail.ru
Russian Federation, Tver, 170002
References
- Fendler J.H., Tian Y. // Nanoparticles and Nanostructured Films: Preparation, Characterization and Applications / Ed. Fendler J.H. Weinheim: WILEY–VCH, 1998. P. 429. https://doi.org/10.1002/9783527612079
- Qazi U.Y., Javaid R. // Adv. Nanoparticles. 2016. V. 5. № 1. P. 27. https://doi.org/10.4236/anp.2016.51004
- Hernando A., Crespo P., García M.A. // Sci. World J. 2005. V. 5. P. 353792. https://doi.org/10.1100/tsw.2005.121
- Deshpande M.D., Pandey R., Blanco M.A., Khalkar A. // J. Nanoparticle Res. 2009. V. 12. P. 1129. https://doi.org/10.1007/s11051-009-9654-6
- Сдобняков Н.Ю., Колосов А.Ю., Богданов С.С. Моделирование процессов коалесценции и спекания в моно- и биметаллических наносистемах. Тверь: Изд-во ТвГУ, 2021. 168 с.
- Samsonov V.M., Talyzin I.V., Puytov V.V., Vasilyev S.A., Romanov A.A., Alymov M.I. // J. Chem. Phys. 2022. V. 156. Iss. 21. P. 214302. https://doi.org/10.1063/5.0075748
- Daniel M.-Ch., Astruc D. // Chem. Rev. 2004. V. 104. Iss. 1. P. 293. https://doi.org/10.1021/cr030698+
- Mody V.V., Siwale R., Singh A., Mody H.R. // J. Pharm. Bioallied Sci. 2010. V. 2 Iss. 4. P. 282 https://doi.org/10.4103/0975-7406.72127
- Zhai Y., Han P., Yun Q., Ge Y., Zhang X., Chen Y., Zhang H. // eScience. 2022. V. 2. Iss. 5. P. 467. https://doi.org/10.1016/j.esci.2022.09.002
- Yin H.-J., Zhou J.-H., Zhang Y. // Inorg. Chem. Frontiers. 2019. V. 6. Iss. 10. P. 2582. https://doi.org/10.1039/c9qi00689c
- Liang S., Chen S., Guo Z., Lan Z., Kobayashi H., Yan X., Li R. // Catal. Sci. Technol. 2019. V. 9. Iss. 19. P. 5292. https://doi.org/10.1039/c9cy01136f
- Kang S.W., Lee Y.W., Park Y., Choi B.-S., Hong J.W., Park K.-H., Han S.W. // ACS Nano. 2013. V. 7. Iss. 9. P. 7945. https://doi.org/10.1021/nn403027j
- Balcerzak M. // Analyst. 1997. V. 122. Iss. 5. P. 67R. https://doi.org/10.1039/a608153c
- Troncoso F.D., Tonetto G.M. // Chem. Eng. Process.: Process Intensif. 2022. V. 170. P. 108669. https://doi.org/10.1016/j.cep.2021.108669
- Cha G., Hwang I., Hejazi S., Dobrota A.S., Pašti I.A., Osuagwu B., Kim H., Will J., Yokosawa T., Badura Z., Kment Š., Mohajernia S., Mazare A., Skorodumova N.V., Spiecker E., Schmuki P. // iScience. 2021. V. 24. Iss. 8. P. 102938. https://doi.org/10.1016/j.isci.2021.102938
- Ferrando R., Jellinek J., Johnston R.L. // Chem. Rev. 2008. V. 108. Iss. 3. P. 845. https://doi.org/10.1021/cr040090g
- Huynh K.-H., Pham X.-H., Kim J., Lee S.H., Chang H., Rho W.-Y., Jun B.-H. // Int. J. Mol. Sci. 2020. V. 21. Iss. 14. P. 5174. https://doi.org/10.3390/ijms21145174
- Sytwu K., Vadai M., Dionne J.A. // Adv. Phys.: X. 2019. V. 4. Iss. 1. P. 1619480. https://doi.org/10.1080/23746149.2019.1619480
- Zhang Y., Ye K., Gu Q., Jiang Q., Qin J., Leng D., Liu Q., Yang B., Yin F. // J. Colloid Interface Sci. 2021. V. 604. P. 301. https://doi.org/10.1016/j.jcis.2021.06.136
- Zhang X., Fu Q., Duan H., Song J., Yang H. // ACS Nano. 2021. V. 15. Iss. 4. P. 6147. https://doi.org/10.1021/acsnano.1c01146
- Song P., Wen D. // J. Phys. Chem. C. 2010. V. 114. Iss. 19. P. 8688. https://doi.org/10.1021/jp908788b
- Samsonov V., Romanov A., Talyzin I., Lutsay A., Zhigunov D., Puytov V. // Metals. 2023. V. 13. Iss. 7. P. 1269. https://doi.org/10.3390/met13071269
- Rousset J.L., Renouprez A.J., Cadrot A.M. // Phys. Rev. B. 1998. V. 107. Iss. 5. P. 054411. https://doi.org/10.1103/PhysRevB.58.2150
- Fiermans L., De Gryse R., De Doncker G., Jacobs P.A., Martensy J.A. // J. Catal. 2000. V. 193. Iss. 1. P. 108. https://doi.org/10.1006/jcat.2000.2868
- Bernardi F., Alves M.C.M., Traverse A., Silva D.O., Scheeren C.W., Dupont J., Morais J. // J. Phys. Chem. C. 2009. V. 113. Iss. 10. P. 3909. https://doi.org/ 10.1021/jp805465x
- Chepkasov I.V., Visotin M.A., Kovaleva E.A., Manakhov A.M., Baidyshev V.S., Popov Z.I. // J. Phys. Chem. C. 2018. V. 122. Iss. 31. P. 18070. https://doi.org/10.1021/acs.jpcc.8b04177
- Samsonov V.M., Bembel A.G., Kartoshkin A.Y., Vasilyev S.A., Talyzin I.V. // J. Ther. Anal. Calorim. 2018. V. 133. P. 1207. https://doi.org/10.1007/s10973-018-7245-4
- Богданов С.С., Сдобняков Н.Ю. Закономерности структурообразования в бинарных наночастицах ГЦК металлов при термическом воздействии: атомистическое моделирование. Тверь: Изд-во ТвГУ, 2023. 144 с. https://doi.org/10.26456/bs.2023.144
- Jeyadevan B., Cuya J.L., Inoue Y., Shinoda K., Ito T., Mott D., Higashimine K., Maenosono S., Matsumoto T., Miyamura H. // RSC Adv. 2014. V. 4. P. 26667. https://doi.org/10.1039/c4ra03091e
- Akbarzadeh H., Mehrjouei E., Abbaspour M., Shamkhali A.N. // Topics Curr. Chem. 2021. V. 379. P. 22. https://doi.org/10.1007/s41061-021-00332-y
- Hang N.T.N., Yang Y., Nam N.Q.T., Nogami M., Phuc L.H., Long N.V. // Crystals. 2022. V. 12. Iss. 3. P. 375. https://doi.org/10.3390/cryst12030375
- Cai X., Lin R., Liu X., Zhao Y. // J. Alloys Compd. 2021. V. 884. P. 161059. https://doi.org/10.1016/j.jallcom.2021.161059
- Wu Z.-P., Caracciolo D.T., Maswadeh Y., Wen J., Kong Z., Shan S., Vargas J.A., Yan S., Hopkins E., Park K., Sharma A., Ren Y., Petkov V., Wang L., Zhong C.J. // Nature Commun. 2021. V. 12. Iss. 1. P. 859. https://doi.org/10.1038/s41467-021-21017-6
- Zheng T., Wu F., Fu H., Zeng L., Shang C., Zhu L., Guo Z. // Chem. Asian J. 2021. V. 16. Iss. 16. P. 2298. https://doi.org/10.1002/asia.202100472
- Непша Н.И., Соколов Д.Н., Митинев Е.С., Тактаров А.А., Сдобняков Н.Ю. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. 2023. Вып. 15. С. 507. https://doi.org/10.26456/pcascnn/2023.15.507
- Рогачев А.С. // Физика металлов и металловедение. 2020. Т. 121. № 8. С. 807. https://doi.org/10.31857/S0015323020080094
- Балякин И.А., Ремпель А.А. // Докл. РАН. Химия, науки о материалах. 2022. Т. 502. № 1. C. 71. https://doi.org/10.31857/S2686953522010046
- LAMMPS Molecular Dynamics Simulator. www.url: http://lammps.sandia.gov. Cited 15 April 2024.
- Соколов Д.Н., Сдобняков Н.Ю., Савина К.Г., Колосов А.Ю., Мясниченко В.С. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. 2021. Вып. 13. С. 624. https://doi.org/10.26456/pcascnn/2021.13.624
- Daw M.S., Baskes M.I. // Phys. Rev. B. 1984. V. 29. Iss. 12. P. 6443. https://doi.org/10.1103/PhysRevB.29.6443
- Cleri F., Rosato V. // Phys. Rev. B. 1993. V. 48. Iss. 1. P. 22. https://doi.org/ 10.1103/PhysRevB.48.22
- Zhou X.W., Johnson R.A., Wadley H.N.G. // Phys. Rev. B. 2004. V. 69. Iss. 14. P. 144113. https://doi.org/10.1103/physrevb.69.144113
- Samsonov V.M., Romanov A.A., Kartoshkin A. Yu., Talyzin I.V., Puytov V.V. // Appl. Phys. A. 2022. V. 128. Iss. 9. P. 826. https://doi.org/10.1007/s00339-022-05922-1.
- Adams J.B., Foiles S.M., Wolfer W.G. // J. Mater. Res. 1989. V. 4. Iss. 1. 1989. P. 102. https://doi.org/10.1557/JMR.1989.0102
- Atomsk. www.url: https://atomsk.univ-lille.fr. Cited 5 August 2023.
- Stukowski A. // Modelling and Simulation in Materials Science and Engineering. 2010. V. 18. Iss. 1. P. 015012. https://doi.org/10.1088/0965-0393/18/1/015012.
- Larsen P.M., Schmidt S., Schiøtz J. // Model. Simul. Mater. Sci. Eng. 2016. V. 24. № 5. P. 055007. https://doi.org/10.1088/0965-0393/24/5/055007.
- Сдобняков Н.Ю., Соколов Д.Н. Изучение термодинамических и структурных характеристик наночастиц металлов в процессах плавления и кристаллизации: теория и компьютерное моделирование: монография. Тверь: Изд-во ТвГУ, 2018. 176 с.
- Samsonov V.M., Kharechkin S.S., Gafner S.L., Redel’ L.V., Gafner Yu. Ya. // Crystallogr. Rep. 2009. V. 54. Iss. 3. P. 526. https://doi.org/10.1134/S1063774509030250
- Sdobnyakov N. Yu., Komarov P.V., Sokolov D.N., Samsonov V.M. // Phys. Metals Metallogr. 2011. V. 111. Iss. 1. P. 13. https://doi.org/10.1134/S0031918X11010121
- Sdobnyakov N. Yu., Myasnichenko V.S., Cheng-Hung San, Yu-Tsung Chiu, Ershov P.M., Ivanov V.A., Komarov P.V. // Mater. Chem. Phys. 2019. V. 238. P. 121895. https://doi.org/10.1016/j.matchemphys.2019.121895
Supplementary files
