Study of zinc implanted silicon nitride film

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of a study of nanoclusters at the interface of a Si3N4 film on a Si substrate implanted with 64Zn+ ions with a dose of 5×1016/cm2 and energy of 40 keV are presented. The Si3N4 film was deposited on a silicon substrate using the gas-phase method. Then the implanted samples were annealed in air in steps of 100°C for 1 hour at each step in the temperature range of 400–700°C. The surface morphology of the samples was studied using scanning probe microscopy. The profiles of the implanted impurity and film elements, as well as the chemical state of the Zn ion, were studied using X-ray photoelectron and Auger electron spectroscopy. The shock pulse method revealed that after implantation, individual metallic zinc nanoclusters with a size of about 100 nm or less were detected near the surface of the Si3N4 film. During the annealing process, they grow with simultaneous transformation into the ZnSiN2 phase and, possibly, into the phases of zinc oxide and silicide near the surface. After annealing at a temperature of 700°C, Zn-containing nanoclusters with a size of about 100 nm are formed in the Si3N4 film.

Full Text

Restricted Access

About the authors

V. V. Privezentsev

Scientific Research Institute for System Analysis of the Russian Academy of Sciences

Author for correspondence.
Email: v.privezentsev@mail.ru
Russian Federation, Moscow

А. А. Firsov

Scientific Research Institute for System Analysis of the Russian Academy of Sciences

Email: v.privezentsev@mail.ru
Russian Federation, Moscow

V. S. Kulikauskas

Lomonosov Moscow State University

Email: v.privezentsev@mail.ru

Skobeltsyn Institute of Nuclear Physics

Russian Federation, Moscow

D. А. Kiselev

National University of Science and Technology “MISiS”

Email: v.privezentsev@mail.ru
Russian Federation, Moscow

B. R. Senatulin

National University of Science and Technology “MISiS”

Email: v.privezentsev@mail.ru
Russian Federation, Moscow

References

  1. Litton C.W., Collins T.C., Reynolds D.S. Zinc Oxide Materials for Electronic and Optoelectronic Device Application, Wiley, Chichester, 2011.
  2. Zain J.H., Ramkumar J., Sankaran C., Tyagi A.K. // Separation Science Technology. 2019. V. 55. Iss. 11. P. 1. https://www.doi.org/10.1080/01496395.2019.1617746
  3. Straumal B.B., Mazilkin A.A., Protasova S.G., Myatiev A.A., Straumal P.B., Schütz G., van Aken P.A., Goering E., Baretzky B. // Phys. Rev. B. 2009. V. 79. P. 205206. https://www.doi.org/10.1103/PhysRevB.79.205206
  4. Liu Y.X., Liu Y.C., Shen D.Z., Zhong G.Z., Fan X.W., Kong X.G., Mu R., Henderson D.O. // J. Cryst. Growth. 2002. V. 240. P. 152.
  5. Urfa Y., Çorumlu V., Altındal A. // Mater. Chem. Phys. 2021. V. 264. P. 124473. https://doi.org/10.1016/j.matchemphys.2021.124473
  6. Sirelkhatim A., Mahmud S., Seeni A., Kaus N.H.M., Ann L.C., Bakhori S.K.M., Habsah H., Dasmawati M. // Nano-Micro Lett. 2015. V. 7. P. 219. https://www.doi.org/10.1007/s40820-015-0040-x
  7. Inbasekaran S., Senthil R., Ramamurthy G., Sastry T.P. // Intern. J. Innov. Res. Sci. Engineer. Technol. 2014. V. 3. Iss. 1. P. 8601.
  8. Smestad G.P, Gratzel M. // J. Chem. Educ. 1998. V. 75. P. 752.
  9. Amekura H., Takeda Y., Kishimoto N. // Nucl. Instrum. Methods Phys. Res. B. 2004. V. 222. P. 96. https://doi.org/10.1016/j.nimb.2004.01.003
  10. Yang J., Liu X., Yang L., Wang Y., Zhang Y., Lang J., Gao M., Wei M. // J. Alloys Compd. 2009. V. 485. P. 743. https://doi.org/10.1016/j.jallcom.2009.06.070
  11. Shen Y., Li Z., Zhang X., Zhang D., He W., Xue Y., Gao Y., Zhang X., Wang Z., Liu C.L. // Optical. Mater. 2010. V. 32. Iss. 9. P. 961. https://www.doi.org/10.1016/j.optmat.2010.01.033
  12. Zatsepin D., Zatsepni A., Boukhvalov D.W., Kurmaev E.Z., Pchelkina Z.V., Gavrilov N.V. // J. Non-Cryst. Solids. B. 2016. V. 432. P. 183. https://www.doi.org/10.1016/j.jnoncrysol.2015.10.002
  13. Tereshchenko A.N., Privezentsev V.V., Firsov A.A., Kulikauskas V.S., Zatekin V.V., Voronova M.I. // J. Surf. Investig.: X-ray, Synchr. Neutr. Tech. 2023. V. 17. P. 1232. https://www.doi.org/10.1134/S1027451023060198
  14. Gwyddion Programm. (2021) Czech Metrology Institute. http://gwyddion.net
  15. National Institute of Standards and Technology. (2000) Gaithersburg, USA. https://www.nist.gov
  16. Moulder J.F. Handbook of X-ray photoelectron spectroscopy. Physical Electronics, 1995. 230 p.
  17. Монахова Ю.Б., Муштакова С.П. // Журнал аналит. химии. 2012. Т. 67. № 12. С. 1044.
  18. Пирс К., Адамс А., Кац Л., Цай Дж., Сейдел Т., Макгиллис Д. Технология СБИС, в 2-х книгах. / Ред. Зи С.М. Пер. с англ. М.: Мир, 1986.
  19. Futsuhara M., Yoshioka K., Takai O. // Thin Solid Films. 1998. V. 322. P. 274.
  20. Coelho-Jún H., Silva B.G., Labre C., Loreto R.P., Sommer R.L. // Sci. Rep. 2021. V. 11. P. 3248.
  21. Анализ поверхности методами Оже- и рентгеновской фотоэлектронной спектроскопии/ / Ред. Бриггс Д., Сих М.П. Пер. с англ. М.: Мир, 1987. 181. с.
  22. MultiPak software. https://multipak.software.com
  23. Thermo Fisher Scientific. (2024) Thermo Fisher Scientific Inc., USA. https://www.thermofisher.com/
  24. Barr T.L., Seal S. // J. Vacuum Sci. Technol. A. 1995. V. 13. Iss. 3. P. 1239. https://doi.org/10.1116/1.579868

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Images of Si3N4/Si film after implantation: a – topography; b – surface potential signal.

Download (45KB)
3. Fig. 2. Images of Si3N4/Si film after annealing at 700°C: a – topography; b – surface potential signal.

Download (54KB)
4. Fig. 3. Histograms of particle distribution in the plane by size: a – after implantation; b – after annealing at 700°C.

Download (34KB)
5. Fig. 4. Histograms of surface potential distribution: 1 — after implantation; 2 — after annealing at 700°C.

Download (13KB)
6. Fig. 5. Concentration profiles of elements after implantation: 1 — O; 2 — N; 3 — Si; 4 — Zn.

Download (12KB)
7. Fig. 6. Profiles of element concentrations after annealing at 700°C: 1 — O; 2 — N; 3 — Si; 4 — Zn.

Download (13KB)
8. Fig. 7. XPS (a) and Auger spectra (b) of the Zn2p3/2 state and the L3M45M45 transition of the sample after implantation, obtained from the region at a depth of 0 (1); 5.3 (2); 23.9 (3); 45.1 (4); 55.7 (5).

Download (33KB)
9. Fig. 8. XPS (a) and Auger spectra (b) of the Zn2p3/2 state and the L3M45M45 transition of the sample after annealing at 700°C, obtained from the region at a depth of 0 (1); 2.7 (2); 13.3 (3); 29.2 (4); 50.4 (5).

Download (33KB)

Copyright (c) 2024 Russian Academy of Sciences