Study of zinc implanted silicon nitride film
- Authors: Privezentsev V.V.1, Firsov А.А.1, Kulikauskas V.S.2, Kiselev D.А.3, Senatulin B.R.3
-
Affiliations:
- Scientific Research Institute for System Analysis of the Russian Academy of Sciences
- Lomonosov Moscow State University
- National University of Science and Technology “MISiS”
- Issue: No 12 (2024)
- Pages: 38-45
- Section: Articles
- URL: https://ruspoj.com/1028-0960/article/view/685353
- DOI: https://doi.org/10.31857/S1028096024120049
- EDN: https://elibrary.ru/QXGGUU
- ID: 685353
Cite item
Abstract
The results of a study of nanoclusters at the interface of a Si3N4 film on a Si substrate implanted with 64Zn+ ions with a dose of 5×1016/cm2 and energy of 40 keV are presented. The Si3N4 film was deposited on a silicon substrate using the gas-phase method. Then the implanted samples were annealed in air in steps of 100°C for 1 hour at each step in the temperature range of 400–700°C. The surface morphology of the samples was studied using scanning probe microscopy. The profiles of the implanted impurity and film elements, as well as the chemical state of the Zn ion, were studied using X-ray photoelectron and Auger electron spectroscopy. The shock pulse method revealed that after implantation, individual metallic zinc nanoclusters with a size of about 100 nm or less were detected near the surface of the Si3N4 film. During the annealing process, they grow with simultaneous transformation into the ZnSiN2 phase and, possibly, into the phases of zinc oxide and silicide near the surface. After annealing at a temperature of 700°C, Zn-containing nanoclusters with a size of about 100 nm are formed in the Si3N4 film.
Full Text

About the authors
V. V. Privezentsev
Scientific Research Institute for System Analysis of the Russian Academy of Sciences
Author for correspondence.
Email: v.privezentsev@mail.ru
Russian Federation, Moscow
А. А. Firsov
Scientific Research Institute for System Analysis of the Russian Academy of Sciences
Email: v.privezentsev@mail.ru
Russian Federation, Moscow
V. S. Kulikauskas
Lomonosov Moscow State University
Email: v.privezentsev@mail.ru
Skobeltsyn Institute of Nuclear Physics
Russian Federation, MoscowD. А. Kiselev
National University of Science and Technology “MISiS”
Email: v.privezentsev@mail.ru
Russian Federation, Moscow
B. R. Senatulin
National University of Science and Technology “MISiS”
Email: v.privezentsev@mail.ru
Russian Federation, Moscow
References
- Litton C.W., Collins T.C., Reynolds D.S. Zinc Oxide Materials for Electronic and Optoelectronic Device Application, Wiley, Chichester, 2011.
- Zain J.H., Ramkumar J., Sankaran C., Tyagi A.K. // Separation Science Technology. 2019. V. 55. Iss. 11. P. 1. https://www.doi.org/10.1080/01496395.2019.1617746
- Straumal B.B., Mazilkin A.A., Protasova S.G., Myatiev A.A., Straumal P.B., Schütz G., van Aken P.A., Goering E., Baretzky B. // Phys. Rev. B. 2009. V. 79. P. 205206. https://www.doi.org/10.1103/PhysRevB.79.205206
- Liu Y.X., Liu Y.C., Shen D.Z., Zhong G.Z., Fan X.W., Kong X.G., Mu R., Henderson D.O. // J. Cryst. Growth. 2002. V. 240. P. 152.
- Urfa Y., Çorumlu V., Altındal A. // Mater. Chem. Phys. 2021. V. 264. P. 124473. https://doi.org/10.1016/j.matchemphys.2021.124473
- Sirelkhatim A., Mahmud S., Seeni A., Kaus N.H.M., Ann L.C., Bakhori S.K.M., Habsah H., Dasmawati M. // Nano-Micro Lett. 2015. V. 7. P. 219. https://www.doi.org/10.1007/s40820-015-0040-x
- Inbasekaran S., Senthil R., Ramamurthy G., Sastry T.P. // Intern. J. Innov. Res. Sci. Engineer. Technol. 2014. V. 3. Iss. 1. P. 8601.
- Smestad G.P, Gratzel M. // J. Chem. Educ. 1998. V. 75. P. 752.
- Amekura H., Takeda Y., Kishimoto N. // Nucl. Instrum. Methods Phys. Res. B. 2004. V. 222. P. 96. https://doi.org/10.1016/j.nimb.2004.01.003
- Yang J., Liu X., Yang L., Wang Y., Zhang Y., Lang J., Gao M., Wei M. // J. Alloys Compd. 2009. V. 485. P. 743. https://doi.org/10.1016/j.jallcom.2009.06.070
- Shen Y., Li Z., Zhang X., Zhang D., He W., Xue Y., Gao Y., Zhang X., Wang Z., Liu C.L. // Optical. Mater. 2010. V. 32. Iss. 9. P. 961. https://www.doi.org/10.1016/j.optmat.2010.01.033
- Zatsepin D., Zatsepni A., Boukhvalov D.W., Kurmaev E.Z., Pchelkina Z.V., Gavrilov N.V. // J. Non-Cryst. Solids. B. 2016. V. 432. P. 183. https://www.doi.org/10.1016/j.jnoncrysol.2015.10.002
- Tereshchenko A.N., Privezentsev V.V., Firsov A.A., Kulikauskas V.S., Zatekin V.V., Voronova M.I. // J. Surf. Investig.: X-ray, Synchr. Neutr. Tech. 2023. V. 17. P. 1232. https://www.doi.org/10.1134/S1027451023060198
- Gwyddion Programm. (2021) Czech Metrology Institute. http://gwyddion.net
- National Institute of Standards and Technology. (2000) Gaithersburg, USA. https://www.nist.gov
- Moulder J.F. Handbook of X-ray photoelectron spectroscopy. Physical Electronics, 1995. 230 p.
- Монахова Ю.Б., Муштакова С.П. // Журнал аналит. химии. 2012. Т. 67. № 12. С. 1044.
- Пирс К., Адамс А., Кац Л., Цай Дж., Сейдел Т., Макгиллис Д. Технология СБИС, в 2-х книгах. / Ред. Зи С.М. Пер. с англ. М.: Мир, 1986.
- Futsuhara M., Yoshioka K., Takai O. // Thin Solid Films. 1998. V. 322. P. 274.
- Coelho-Jún H., Silva B.G., Labre C., Loreto R.P., Sommer R.L. // Sci. Rep. 2021. V. 11. P. 3248.
- Анализ поверхности методами Оже- и рентгеновской фотоэлектронной спектроскопии/ / Ред. Бриггс Д., Сих М.П. Пер. с англ. М.: Мир, 1987. 181. с.
- MultiPak software. https://multipak.software.com
- Thermo Fisher Scientific. (2024) Thermo Fisher Scientific Inc., USA. https://www.thermofisher.com/
- Barr T.L., Seal S. // J. Vacuum Sci. Technol. A. 1995. V. 13. Iss. 3. P. 1239. https://doi.org/10.1116/1.579868
Supplementary files
