Effect of radiation-induced defects in gallium and nitrogen lattices on n-GaN conductivity compensation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A comparative analysis of radiation defect formation in the gallium and nitrogen lattices of gallium nitride under irradiation with 15 MeV protons and 0.9 MeV electrons was performed. For proton deceleration, numerical simulations were carried out using the SRIM program, and for electrons, analytical calculations were carried out. Under proton irradiation, the total vacancy generation rate in the gallium lattice ηFP(Ga) was shown to be ~560 cm–1, and in the nitrogen lattice ηFP(N) ~1340 cm–1. Detailed numerical calculations in the Full Cascade mode showed that in the gallium lattice, the vacancy formation rate due to protons was 110 cm–1, and due to cascade processes was 450 cm–1. In the nitrogen lattice, this “disproportion” looked even stronger (60 and 1280 cm–1, respectively). Under electron irradiation, the vacancy generation rate in the gallium lattice ηFP(Ga) was ~4.7 cm–1, and in the nitrogen lattice ηFP(N) ~2.0 cm–1. To experimentally study radiation defects in n-GaN, which create deep levels and compensate for the conductivity of the material, direct current–voltage characteristics of Schottky diodes based on n-GaN were measured. It was shown that the rates of charge carrier removal in n-GaN were 0.47 cm–1 under electron irradiation and 150 cm–1 under proton irradiation. Comparison of the calculated and experimental parameters of radiation defect formation allows us to draw a conclusion about the mechanism of the compensation process and the radiation defects responsible for this process.

Full Text

Restricted Access

About the authors

V. V. Kozlovski

Peter the Great St. Petersburg Polytechnic University

Author for correspondence.
Email: kozlovski@physics.spbstu.ru
Russian Federation, St. Petersburg

А. E. Vasil’ev

Peter the Great St. Petersburg Polytechnic University

Email: electronych@mail.ru
Russian Federation, St. Petersburg

А. А. Lebedev

Ioffe Institute

Email: shura.lebe@mail.ioffe.ru
Russian Federation, St. Petersburg

Е. Е. Zhurkin

Peter the Great St. Petersburg Polytechnic University

Email: kozlovski@physics.spbstu.ru
Russian Federation, St. Petersburg

М. Е. Левинштейн

Ioffe Institute

Email: shura.lebe@mail.ioffe.ru
Russian Federation, St. Petersburg

А. М. Strelchuk

Ioffe Institute

Email: shura.lebe@mail.ioffe.ru
Russian Federation, St. Petersburg

D. А. Malevsky

Ioffe Institute

Email: shura.lebe@mail.ioffe.ru
Russian Federation, St. Petersburg

А. V. Sakharov

Ioffe Institute

Email: shura.lebe@mail.ioffe.ru
Russian Federation, St. Petersburg

А. Е. Nikolaev

Ioffe Institute

Email: shura.lebe@mail.ioffe.ru
Russian Federation, St. Petersburg

References

  1. Binari S.C., Dietrich H.B., Kelner G. et al. // Appl. Phys. 1995. V. 78. № 5. P. 3008. https://doi.org/10.1063/1.360712
  2. Kucheyev S.O., Boudinov H., Williams J.S. et al. // J. Appl. Phys. 2002. V. 91. № 7. P. 4117. https://doi.org/10.1063/1.1455154
  3. Polyakov A Y, Pearton S J, Frenzer P. et al. // Mater. Chem. C. 2013. V. 5 № 1. P. 877. https://doi.org/10.1039/C2TC00039C
  4. J. Pearton S.J., Ren F., Erin Patrick et al. // ECS J. Solid State Sci. Technol. 2016. V. 5. P. Q35. https://doi.org/10.1149/2.0251602jss
  5. Pearton J., Deist R., Ren F. et al. // J. Vac. Sci. Technol. A. 2013. V. 31. P. 5. https://doi.org/10.1116/1.4799504
  6. Karmarkar A.P., White B.D., Buttari D. et al. // IEEE Trans. Nucl. Sci. 2005. V. 52. P. 2239. https://doi.org/10.1109/TNS.2005.860668
  7. Лебедев А.А., Белов С.В., Мынбаева М.Г. и др. // Физика и техника полупроводников. 2015. Т. 49. Вып. 10. С. 1386. https://doi.org/10.1134/S1063782615100127
  8. Polyakov A.Y., Lee I.-H., Smirnov N.B. et al. // J. Appl. Phys. 2011. V. 109. P. 123703. https://doi.org/10.1063/1.3596819
  9. Emtsev V.V., Davydov V.Yu., Haller E.E. et al. // Physica B. 2001. V. 308–310. P. 58. https://doi.org/10.1016/S0921-4526(01)00650-0
  10. Ionascut-Nedelcescu A., Carlone C., Houdayer A. et al. // IEEE Trans. Nucl. Sci. 2002. V. 49. P. 2733. https://doi.org/10.1109/TNS.2002.805363
  11. SRIM-2013 Software Package. http://www.srim.org https://doi: 10.1007/978-1-4615-8103-1_3
  12. Ziegler J.F., Biersack J.P., Littmark U. The Stopping and Range of Ions in Solids. New York: Pergamon, 1985. 342 p.
  13. Look D.C., Reynolds D.C., Hemsky J.W. et al. // Phys. Rev. Lett. 1997. V. 79. P. 2273. https://doi.org/10.1103/PhysRevLett.79.2273
  14. MacKinley W.A., Feshbach H. // Phys. Rev. 1948. V. 74. P. 1759. https://doi.org/10.1103/PhysRev.74.1759
  15. Chen D., Cai D., Bernard D., Peneliau Y. // Nucl. Instrum. Methods Phys. Res. B. 2023. V. 535. P. 137. https://doi.org/10.1016/j.nimb.2022.12.007
  16. Dang T.-H., Konczykowski M., Jaffrès H. et al. // J. Vac. Sci. Technol. A. 2022. V. 40. P. 033416. https://doi.org/10.1116/6.0001821
  17. Titov A.I., Kucheyev S.O. // J. Appl. Phys. 2002. V. 92. № 10. P. 5740. https://doi.org/10.1063/1.1513199
  18. Emtsev V.V., Davydov V.Yu., Kozlovski V.V. et al. // Semicond. Sci. Technol. 2000. V. 15. P. 73. https://doi.org/10.1088/0268-1242/15/1/313
  19. Kozlovski V.V., Lebedev A.A., Bogdanova E.V. // J. Appl. Phys. 2015. V. 117. P. 155702. https://doi.org/10.1063/1.4918607
  20. Козловский В.В., Васильев А.Э., Лебедев А.А. и др. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2022. № 6. С. 64. https://doi.org/10.31857/S1028096022060097
  21. Козловский В.В., Васильев А.Э., Давыдовская К.С., Лебедев А.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2019. № 2. С. 82. https://doi.org/10.1134/S0207352819020070

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of the structures studied.

Download (8KB)
3. Fig. 2. Direct current-voltage characteristics of Schottky diodes after irradiation with electrons with an energy of 0.9 MeV at different doses D: 1 — 0; 2 — 2 ⋅ 1016; 3 — 4 ⋅ 1016; 4 –6 ⋅ 1016 cm–1.

Download (13KB)
4. Fig. 3. Numerical simulation using SRIM programs of the rate of vacancy generation by one proton (η) in the lattices of gallium (1) and nitrogen (2) when GaN is irradiated with protons with an energy of 15 MeV.

Download (13KB)
5. Fig. 4. Direct current-voltage characteristics of Schottky diodes after irradiation with protons with an energy of 15 MeV at different doses D: 1 — 0; 2 — 1 × 1014; 3 — 4 × 1014; 4 — 5 × 1014 cm–1.

Download (11KB)

Copyright (c) 2024 Russian Academy of Sciences