Controlled Nanostructuring of Thin Films by Oblique Deposition

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using electron beam evaporation, thin films of various compositions (Al, Co, Ge, SiO2) were obtained on inclined Si(001) substrates. It was found that at angles of incidence of the evaporated material on the substrate of more than 70° (sliding deposition), arrays of free-standing inclined nanocolumns with lateral dimensions from 10 to 100 nm and an aspect ratio (length/transverse dimension) of at least 10 were formed on the substrate. When substrate rotation was switched on during film growth, an array of nanospirals twisted in one direction was formed. Such films are chiral metamaterials and have pronounced optical activity. Simulation of film growth processes under oblique deposition conditions using the Monte Carlo method showed good qualitative agreement with the experimental data. It was found that the observed processes of nanostructuring during inclined deposition are based on universal mechanisms of competition between growing crystalline grains under conditions of neighbor shading. This makes it possible to obtain nanostructured films of various materials with the required functional characteristics under such conditions.

Full Text

Restricted Access

About the authors

O. S. Trushin

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS

Author for correspondence.
Email: otrushin@gmail.com
Russian Federation, Yaroslavl, 150067

I. S. Fattakhov

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS; Demidov Yaroslavl State University

Email: otrushin@gmail.com
Russian Federation, Yaroslavl, 150067; Yaroslavl, 150003

M. M. Chebokhin

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS; Demidov Yaroslavl State University

Email: otrushin@gmail.com
Russian Federation, Yaroslavl, 150067; Yaroslavl, 150003

A. A. Popov

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS

Email: otrushin@gmail.com
Russian Federation, Yaroslavl, 150067

L. A. Mazaletsky

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS; Demidov Yaroslavl State University

Email: otrushin@gmail.com
Russian Federation, Yaroslavl, 150067; Yaroslavl, 150003

References

  1. Амиров И.И., Селюков Р.В., Наумов В.В., Горлачев Е.С. // Микроэлектроника. 2021. Т. 50. 1. С. 3.
  2. Hawkeye M.M., Brett M.J. // J. Vac. Sci. Technol. A. 2007. V. 25. P. 1317. doi: 10.1116/1.2764082
  3. Barranco A., Borras A., Gonzalez-Elipe A.R., Palmero A. // Progress Mater. Sci. 2016. V. 76. P. 59. doi: 10.1016/j.pmatsci.2015.06.003
  4. Hawkeye M.M., Taschuk M.T., Brett M.J. Glancing Angle Deposition of Thin Films. London: John Wiley & Sons, Ltd, UK. 2014. 299 p.
  5. Karabacak T., Singh J. P., Zhao Y.-P., Wang G.-C., Lu T.-M. // Phys. Rev. B. 2003. V. 68. P. 125408. doi: 10.1103/PhysRevB.68.125408
  6. Bouaouina B., Mastail C., Besnard A., Mareus R., Nita F., Michel A., Abadias G. // Mater. Design. 2018. V. 160. P. 338. doi: 10.1016/j.matdes.2018.09.023
  7. Smy T., Vick D., Brett M. J., Dew S.K., Wu A.T., Sit J.C., Harris K.D. // J. Vac. Sci. Technol. A. 2000. V. 18. № 5. P. 2507. doi: 10.1116/1.1286394
  8. Suzuki M., Taga Y. // J. Appl. Phys. 2001. V. 90. № 11. P. 5599. doi: 10.1063/1.1415534
  9. Belyaev B.A., Izotov A.V., Solovev P.N. // Russ. Phys. J. 2016. V. 59. № 2. P. 301. doi: 10.1007/s11182-016-0771-2
  10. Hubartt B.C., Liu X., Amar J.G. // J. Appl. Phys. 2013. V. 114. P. 083517. doi: 10.1063/1.4819446
  11. Mes-adi H., Saadouni K., Mazroui M. // Thin Solid Films. 2021. V. 721. P. 13855. doi: 10.1016/j.tsf.2021.138553
  12. Grigoriev F.V., Sulimov V.B., Tikhonravov A.V. // J. Non-Crystalline Solids. 2019. V. 512. P. 98. doi: 10.1016/j.jnoncrysol.2019.02.016
  13. Esposito M., Tasco V., Todisco F., Cuscunà M., Benedetti A., Scuderi M., Nicotra G., Passaseo A. // Nano Lett. 2016. V. 16. № 9. P. 5823. doi: 10.1021/acs.nanolett.6b02583
  14. Singh J.H., Nair G., Ghosh A., Ghosh A. // Nanoscale. 2013. V. 5. P. 7224. doi: 10.1039/c3nr02666c
  15. Gibbs J.G., Mark A.G., Eslami S., FischerP. // Appl. Phys. Lett. 2013. V. 103. P. 213101. doi: 10.1063/1.4829740
  16. Faryad M., Lakhtakia A. // Adv. Opt. Photon. 2014. V. 6. P. 225. doi: 10.1364/AOP.6.000225
  17. Gansel J.K., Thiel M., Rill M.S., Decker M., Bade K., Saile V., Freymann G., Linden S., Wegener M. // Science. 2009. V. 325. P. 1513. doi: 10.1126/science.1177031
  18. Schaferling M. Chiral Nanophotonics // Springer Ser. in Opt. Sci. Springer International Publishing Switzerland, 2017. P. 205.
  19. Трушин О.С., Попов А.А., Пестова А.Н., Мазалецкий Л.А., Акулов А.А. // Письма в ЖТФ. 2021. Т. 47. Вып. 12. С. 31. doi: 10.21883/PJTF.2021.12.51064.18748
  20. Трушин О.С., Попов А.А., Пестова А.Н., Мазалецкий Л.А., Акулов А.А., Ломов А.А. // Изв. РАН. Сер. физ. 2022. Т. 86. № 5. С. 650. doi: 10.31857/S0367676522050283
  21. Трушин О.С., Фаттахов И.С., Попов А.А., Мазалецкий Л.А., Ломов А.А., Захаров Д.М., Гайдукасов Р.А., Мяконьких А.В., Шендрикова Л.А. // ФТТ. 2023. Т. 65. Вып. 6б. С. 996. doi: 10.21883/FTT.2023.06.55656.16H

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic diagram of the oblique sputtering experiment: 1 - substrate; 2 - vaporised target; 3 - flow of electrons bombarding the target.

Download (109KB)
3. Fig. 2. SEM images of films of different compositions (cross section (a, c, d, e, g) and top view (b, d, f, h)): a, b - Al; c, d - Co; e, f - Ge; g, h - SiO2. All films were obtained at an optimum tilt angle of 85°.

Download (692KB)
4. Fig. 3. Schematic representation of the mechanism of nanospirals formation when including the rotation of the substrate around its normal to the plane.

Download (327KB)
5. Fig. 4. SEM images of films of different compositions (cross section (a, c, e) and top view (b, d, f)): a, b - Co; c, d - Ge; e, f - SiO2. All films were obtained at an optimal tilt angle of 85° and a substrate rotation speed of 0.6 rpm.

Download (1MB)
6. Fig. 5. Schematic of the model.

Download (192KB)
7. Fig. 6. Views of the calculated cell after sputtering at an angle of 85°: a - without rotation; b - with the inclusion of rotation.

Download (343KB)

Copyright (c) 2024 Russian Academy of Sciences