Controlled Nanostructuring of Thin Films by Oblique Deposition
- 作者: Trushin O.S.1, Fattakhov I.S.1,2, Chebokhin M.M.1,2, Popov A.A.1, Mazaletsky L.A.1,2
-
隶属关系:
- Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS
- Demidov Yaroslavl State University
- 期: 编号 11 (2024)
- 页面: 32-40
- 栏目: Articles
- URL: https://ruspoj.com/1028-0960/article/view/681222
- DOI: https://doi.org/10.31857/S1028096024110041
- EDN: https://elibrary.ru/RETWFC
- ID: 681222
如何引用文章
详细
Using electron beam evaporation, thin films of various compositions (Al, Co, Ge, SiO2) were obtained on inclined Si(001) substrates. It was found that at angles of incidence of the evaporated material on the substrate of more than 70° (sliding deposition), arrays of free-standing inclined nanocolumns with lateral dimensions from 10 to 100 nm and an aspect ratio (length/transverse dimension) of at least 10 were formed on the substrate. When substrate rotation was switched on during film growth, an array of nanospirals twisted in one direction was formed. Such films are chiral metamaterials and have pronounced optical activity. Simulation of film growth processes under oblique deposition conditions using the Monte Carlo method showed good qualitative agreement with the experimental data. It was found that the observed processes of nanostructuring during inclined deposition are based on universal mechanisms of competition between growing crystalline grains under conditions of neighbor shading. This makes it possible to obtain nanostructured films of various materials with the required functional characteristics under such conditions.
全文:

作者简介
O. Trushin
Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS
编辑信件的主要联系方式.
Email: otrushin@gmail.com
俄罗斯联邦, Yaroslavl, 150067
I. Fattakhov
Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS; Demidov Yaroslavl State University
Email: otrushin@gmail.com
俄罗斯联邦, Yaroslavl, 150067; Yaroslavl, 150003
M. Chebokhin
Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS; Demidov Yaroslavl State University
Email: otrushin@gmail.com
俄罗斯联邦, Yaroslavl, 150067; Yaroslavl, 150003
A. Popov
Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS
Email: otrushin@gmail.com
俄罗斯联邦, Yaroslavl, 150067
L. Mazaletsky
Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS; Demidov Yaroslavl State University
Email: otrushin@gmail.com
俄罗斯联邦, Yaroslavl, 150067; Yaroslavl, 150003
参考
- Амиров И.И., Селюков Р.В., Наумов В.В., Горлачев Е.С. // Микроэлектроника. 2021. Т. 50. 1. С. 3.
- Hawkeye M.M., Brett M.J. // J. Vac. Sci. Technol. A. 2007. V. 25. P. 1317. doi: 10.1116/1.2764082
- Barranco A., Borras A., Gonzalez-Elipe A.R., Palmero A. // Progress Mater. Sci. 2016. V. 76. P. 59. doi: 10.1016/j.pmatsci.2015.06.003
- Hawkeye M.M., Taschuk M.T., Brett M.J. Glancing Angle Deposition of Thin Films. London: John Wiley & Sons, Ltd, UK. 2014. 299 p.
- Karabacak T., Singh J. P., Zhao Y.-P., Wang G.-C., Lu T.-M. // Phys. Rev. B. 2003. V. 68. P. 125408. doi: 10.1103/PhysRevB.68.125408
- Bouaouina B., Mastail C., Besnard A., Mareus R., Nita F., Michel A., Abadias G. // Mater. Design. 2018. V. 160. P. 338. doi: 10.1016/j.matdes.2018.09.023
- Smy T., Vick D., Brett M. J., Dew S.K., Wu A.T., Sit J.C., Harris K.D. // J. Vac. Sci. Technol. A. 2000. V. 18. № 5. P. 2507. doi: 10.1116/1.1286394
- Suzuki M., Taga Y. // J. Appl. Phys. 2001. V. 90. № 11. P. 5599. doi: 10.1063/1.1415534
- Belyaev B.A., Izotov A.V., Solovev P.N. // Russ. Phys. J. 2016. V. 59. № 2. P. 301. doi: 10.1007/s11182-016-0771-2
- Hubartt B.C., Liu X., Amar J.G. // J. Appl. Phys. 2013. V. 114. P. 083517. doi: 10.1063/1.4819446
- Mes-adi H., Saadouni K., Mazroui M. // Thin Solid Films. 2021. V. 721. P. 13855. doi: 10.1016/j.tsf.2021.138553
- Grigoriev F.V., Sulimov V.B., Tikhonravov A.V. // J. Non-Crystalline Solids. 2019. V. 512. P. 98. doi: 10.1016/j.jnoncrysol.2019.02.016
- Esposito M., Tasco V., Todisco F., Cuscunà M., Benedetti A., Scuderi M., Nicotra G., Passaseo A. // Nano Lett. 2016. V. 16. № 9. P. 5823. doi: 10.1021/acs.nanolett.6b02583
- Singh J.H., Nair G., Ghosh A., Ghosh A. // Nanoscale. 2013. V. 5. P. 7224. doi: 10.1039/c3nr02666c
- Gibbs J.G., Mark A.G., Eslami S., FischerP. // Appl. Phys. Lett. 2013. V. 103. P. 213101. doi: 10.1063/1.4829740
- Faryad M., Lakhtakia A. // Adv. Opt. Photon. 2014. V. 6. P. 225. doi: 10.1364/AOP.6.000225
- Gansel J.K., Thiel M., Rill M.S., Decker M., Bade K., Saile V., Freymann G., Linden S., Wegener M. // Science. 2009. V. 325. P. 1513. doi: 10.1126/science.1177031
- Schaferling M. Chiral Nanophotonics // Springer Ser. in Opt. Sci. Springer International Publishing Switzerland, 2017. P. 205.
- Трушин О.С., Попов А.А., Пестова А.Н., Мазалецкий Л.А., Акулов А.А. // Письма в ЖТФ. 2021. Т. 47. Вып. 12. С. 31. doi: 10.21883/PJTF.2021.12.51064.18748
- Трушин О.С., Попов А.А., Пестова А.Н., Мазалецкий Л.А., Акулов А.А., Ломов А.А. // Изв. РАН. Сер. физ. 2022. Т. 86. № 5. С. 650. doi: 10.31857/S0367676522050283
- Трушин О.С., Фаттахов И.С., Попов А.А., Мазалецкий Л.А., Ломов А.А., Захаров Д.М., Гайдукасов Р.А., Мяконьких А.В., Шендрикова Л.А. // ФТТ. 2023. Т. 65. Вып. 6б. С. 996. doi: 10.21883/FTT.2023.06.55656.16H
补充文件
