Medicinal Plant-derived Phytochemicals in Detoxification

  • Authors: Bjørklund G.1, Cruz-Martins N.2, Goh B.3, Mykhailenko O.4, Lysiuk R.5, Shanaida M.6, Lenchyk L.7, Upyr T.7, Rusu M.8, Pryshlyak A.9, Shanaida V.10, Chirumbolo S.11
  • Affiliations:
    1. Department of Research, Council for Nutritional and Environmental Medicine (CONEM)
    2. Facculty of Medicine, University of Porto
    3. Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy,, Monash University Malaysia
    4. Department of Pharmaceutical Chemistry, National University of Pharmacy
    5. Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University
    6. Department of Pharmacognosy and Medical Botany, Horbachevsky Ternopil National Medical University
    7. CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy
    8. Department of Pharmaceutical Technology and Biopharmaceutics,, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy
    9. Department of Human Anatomy, I. Horbachevsky Ternopil National Medical University
    10. Design of Machine Tools, Instruments and Machines Department, Ternopil Ivan Pului National Technical University
    11. Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona
  • Issue: Vol 30, No 13 (2024)
  • Pages: 988-1015
  • Section: Immunology, Inflammation & Allergy
  • URL: https://ruspoj.com/1381-6128/article/view/645555
  • DOI: https://doi.org/10.2174/1381612829666230809094242
  • ID: 645555

Cite item

Full Text

Abstract

The average worldwide human life expectancy is 70 years, with a significantly higher value in Western societies. Many modern diseases are not associated with premature mortality but with a decreased quality of life in aged patients and an excessive accumulation of various toxic compounds in the human body during life. Today, scientists are especially interested in finding compounds that can help increase a healthy lifespan by detoxifying the body. Phytotherapy with specific approaches is used in alternative medicine to remove toxins from the body. Worldwide, research is conducted to identify medicinal plant-derived molecules that, with few or no side effects, may protect the liver and other organs. This review provides updated information about the detoxification process, the traditional and modern use of the most effective medicinal plants, their active metabolites as detoxifying agents, and the mechanisms and pathways involved in the detoxification process. Among medicinal plants with substantial detoxifying properties, a major part belongs to the Asteraceae family (Silybum marianum, Cynara scolymus, Arctium lappa, Helichrysum species, Inula helenium, and Taraxacum officinale). The most widely used hepatoprotective phytocomponent is silymarin, a standardized extract from the Silybum marianum seeds containing a mixture of flavonolignans. Many polysaccharides, polyphenols, and terpenoids have a detoxifying effect. Overall, scientific data on medicinal plants used in phytotherapeutic practice worldwide provides an understanding and awareness of their efficacy in detoxification.

About the authors

Geir Bjørklund

Department of Research, Council for Nutritional and Environmental Medicine (CONEM)

Author for correspondence.
Email: info@benthamscience.net

Natália Cruz-Martins

Facculty of Medicine, University of Porto

Email: info@benthamscience.net

Bey Goh

Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy,, Monash University Malaysia

Email: info@benthamscience.net

Olha Mykhailenko

Department of Pharmaceutical Chemistry, National University of Pharmacy

Email: info@benthamscience.net

Roman Lysiuk

Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University

Email: info@benthamscience.net

Mariia Shanaida

Department of Pharmacognosy and Medical Botany, Horbachevsky Ternopil National Medical University

Email: info@benthamscience.net

Larysa Lenchyk

CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy

Email: info@benthamscience.net

Taras Upyr

CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy

Email: info@benthamscience.net

Marius Rusu

Department of Pharmaceutical Technology and Biopharmaceutics,, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy

Email: info@benthamscience.net

Antonina Pryshlyak

Department of Human Anatomy, I. Horbachevsky Ternopil National Medical University

Email: info@benthamscience.net

Volodymyr Shanaida

Design of Machine Tools, Instruments and Machines Department, Ternopil Ivan Pului National Technical University

Email: info@benthamscience.net

Salvatore Chirumbolo

Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona

Email: info@benthamscience.net

References

  1. Eleawa SM, Alkhateeb MA, Alhashem FH, et al. Resveratrol reverses cadmium chloride-induced testicular damage and subfertility by downregulating p53 and Bax and upregulating gonadotropins and Bcl-2 gene expression. J Reprod Dev 2014; 60(2): 115-27. doi: 10.1262/jrd.2013-097 PMID: 24492640
  2. Zellner T, Prasa D, Färber E, Hoffmann-Walbeck P, Genser D, Eyer F. The use of activated charcoal to treat intoxications. Dtsch Arztebl Int 2019; 116(18): 311-7. doi: 10.3238/arztebl.2019.0311 PMID: 31219028
  3. Thilagavathi R, Begum SS, Varatharaj SD, Balasubramaniam A, George JS, Selvam C. Recent insights into the hepatoprotective potential of medicinal plants and plant-derived compounds. Phytother Res 2023; 37(5): 2102-18. doi: 10.1002/ptr.7821 PMID: 37022281
  4. Bridi R, Poser G, Meirelles G. Iridoids as a potential hepatoprotective class: A review. Mini Rev Med Chem 2022; 23(4): 452-79. PMID: 35975865
  5. Sun W, Yan B, Wang R, et al. In vivo acute toxicity of detoxified Fuzi (lateral root of Aconitum carmichaeli) after a traditional detoxification process. EXCLI J 2018; 17: 889-99. PMID: 30564068
  6. Wang X, Yan Y, Zhang A, et al. Toxicity and detoxification effects of herbal Caowu via ultra performance liquid chromatography/mass spectrometry metabolomics analyzed using pattern recognition method. Pharmacogn Mag 2017; 13(52): 683-92. doi: 10.4103/pm.pm_475_16 PMID: 29200734
  7. Ajanaku CO, Ademosun OT, Atohengbe PO, et al. Functional bioactive compounds in ginger, turmeric, and garlic. Front Nutr 2022; 9: 1012023. doi: 10.3389/fnut.2022.1012023 PMID: 36570131
  8. Seeff L, Lindsay KL, Bacon BR, Kresina TF, Hoofnagle JH. Complementary and alternative medicine in chronic liver disease. Hepatology 2001; 34(3): 595-603. doi: 10.1053/jhep.2001.27445 PMID: 11526548
  9. Bhattacharya S. Medicinal plants and natural products in amelioration of arsenic toxicity: A short review. Pharm Biol 2017; 55(1): 349-54. doi: 10.1080/13880209.2016.1235207 PMID: 27931138
  10. Mehrandish R, Rahimian A, Shahriary A. Heavy metals detoxification: A review of herbal compounds for chelation therapy in heavy metals toxicity. J HerbMed Pharmacol 2019; 8(2): 69-77. doi: 10.15171/jhp.2019.12
  11. Eliaz I, Hotchkiss AT, Fishman ML, Rode D. The effect of modified citrus pectin on urinary excretion of toxic elements. Phytother Res 2006; 20(10): 859-64. doi: 10.1002/ptr.1953 PMID: 16835878
  12. Eivazzadeh-Keihan R, Noruzi EB, Aliabadi HAM, et al. Recent advances on biomedical applications of pectin-containing biomaterials. Int J Biol Macromol 2022; 217: 1-18. doi: 10.1016/j.ijbiomac.2022.07.016 PMID: 35809676
  13. Houston MC. The role of mercury and cadmium heavy metals in vascular disease, hypertension, coronary heart disease, and myocardial infarction. Altern Ther Health Med 2007; 13(2): S128-33. PMID: 17405690
  14. Davis TA, Volesky B, Mucci A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 2003; 37(18): 4311-30. doi: 10.1016/S0043-1354(03)00293-8 PMID: 14511701
  15. Eliaz I, Weil E, Wilk B. Integrative medicine and the role of modified citrus pectin/alginates in heavy metal chelation and detoxification-five case reports. Forsch Komplement Med 2007; 14(6): 358-64. PMID: 18219211
  16. Bjørklund G, Rahaman MS, Shanaida M, et al. Natural dietary compounds in the treatment of arsenic toxicity. Molecules 2022; 27(15): 4871. doi: 10.3390/molecules27154871 PMID: 35956821
  17. Xie JH, Jin ML, Morris GA, et al. Advances on bioactive polysaccharides from medicinal plants. Crit Rev Food Sci Nutr 2016; 56(Suppl. 1): S60-84. doi: 10.1080/10408398.2015.1069255 PMID: 26463231
  18. Gasmi A, Shanaida M, Oleshchuk O, et al. Natural ingredients to improve immunity. Pharmaceuticals 2023; 16(4): 528. doi: 10.3390/ph16040528 PMID: 37111285
  19. Shinkovenko IL, Kashpur NV, Ilyina TV, et al. The immunomodulatory activity of the extracts and complexes of biologically active compounds of Galium verum L. herb. Ceska Slov Farm 2018; 67(1): 25-9. PMID: 30157664
  20. Li Y, Zheng Y, Zhang Y, et al. Brown algae carbohydrates: Structures, pharmaceutical properties, and research challenges. Mar Drugs 2021; 19(11): 620. doi: 10.3390/md19110620 PMID: 34822491
  21. Cao P, Wu S, Wu T, et al. The important role of polysaccharides from a traditional Chinese medicine-lung cleansing and detoxifying decoction against the COVID-19 pandemic. Carbohydr Polym 2020; 240: 116346. doi: 10.1016/j.carbpol.2020.116346 PMID: 32475597
  22. Du M, Cheng X, Qian L, Huo A, Chen J, Sun Y. Extraction, physicochemical properties, functional activities and applications of inulin polysaccharide: A review. Plant Foods Hum Nutr 2023; 78(12): 243-52. doi: 10.1007/s11130-023-01066-6 PMID: 37097509
  23. Chen YX, Lin Q, Luo YM, et al. The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere 2003; 50(6): 807-11. doi: 10.1016/S0045-6535(02)00223-0 PMID: 12688495
  24. Ma JF. Role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiol 2000; 41(4): 383-90. doi: 10.1093/pcp/41.4.383 PMID: 10845450
  25. Shanaida M, Pryshlyak A, Golembiovska O. Determination of triterpenoids in some Lamiaceae species. Res J Pharm Technol 2018; 11(7): 3113-8. doi: 10.5958/0974-360X.2018.00571.1
  26. Majee C, Mazumder R, Salahuddin S. An insight into the hepatoprotective activity and structure-activity relationships of flavonoids. Mini Rev Med Chem 2022; 2022: 22. PMID: 35657045
  27. Shanaida M. Comparative analysis of phenolic compounds in the american basil and wild bergamot herbs. Pharmacologyonline 2021; 2: 943-52.
  28. Gasmi A, Mujawdiya PK, Lysiuk R, et al. Quercetin in the prevention and treatment of coronavirus infections: A focus on SARS- CoV-2. Pharmaceuticals 2022; 15(9): 1049. doi: 10.3390/ph15091049 PMID: 36145270
  29. Lee S, Lee J, Lee H, Sung J. Relative protective activities of quercetin, quercetin-3-glucoside, and rutin in alcohol-induced liver injury. J Food Biochem 2019; 43(11): e13002. doi: 10.1111/jfbc.13002 PMID: 31378953
  30. Miltonprabu S, Tomczyk M, Skalicka-Wozniak K, et al. Hepatoprotective effect of quercetin: From chemistry to medicine. Food Chem Toxicol 2017; 108(Pt B): 365-74.
  31. Saricaoglu B, Gültekin Subaşı B, Karbancioglu-Guler F, Lorenzo JM, Capanoglu E. Phenolic compounds as natural microbial toxin detoxifying agents. Toxicon 2023; 222: 106989. doi: 10.1016/j.toxicon.2022.106989 PMID: 36509264
  32. Vladimir-Knežević S, Blažeković B, Kindl M, Vladić J, Lower-Nedza A, Brantner A. Acetylcholinesterase inhibitory, antioxidant and phytochemical properties of selected medicinal plants of the Lamiaceae family. Molecules 2014; 19(1): 767-82. doi: 10.3390/molecules19010767 PMID: 24413832
  33. Sarma H. Transgenic Plant Technology for Remediation of Toxic Metals and Metalloids. Amsterdam: Elsevier 2019; pp. 299-318. doi: 10.1016/B978-0-12-814389-6.00014-6
  34. Moradi M-T, Asadi-Samani M, Bahmani M, Shahrani M. Medicinal plants used for liver disorders based on the Ethnobotanical documents of Iran: A review. Int J Pharm Tech Res 2016; 9(5): 407-15.
  35. Madrigal-Santillán E, Madrigal-Bujaidar E, Álvarez-González I, et al. Review of natural products with hepatoprotective effects. World J Gastroenterol 2014; 20(40): 14787-804. doi: 10.3748/wjg.v20.i40.14787 PMID: 25356040
  36. Bjørklund G, Shanaida M, Lysiuk R, et al. Natural compounds and products from an anti-aging perspective. Molecules 2022; 27(20): 7084. doi: 10.3390/molecules27207084 PMID: 36296673
  37. Gasmi A, Mujawdiya PK, Noor S, et al. Polyphenols in metabolic diseases. Molecules 2022; 27(19): 6280. doi: 10.3390/molecules27196280 PMID: 36234817
  38. Gons’kyĭ IaI, Korda MM, Klishch IM. Status of the free radical oxidation and antioxidant system in rats with toxic liver damage; effect of tocopherol and dimethylsulfoxide. Ukr Biokhim Zh 1991; 63(5): 112-6. PMID: 1788866
  39. Koshovyi O, Granica S, Piwowarski JP, et al. Highbush blueberry (Vaccinium corymbosum L.) leaves extract and its modified arginine preparation for the management of metabolic syndrome- chemical analysis and bioactivity in rat model. Nutrients 2021; 13(8): 2870. doi: 10.3390/nu13082870 PMID: 34445028
  40. Skakun NP, Stepanova YN. Comparative evaluation of the hepatoprotective, antioxidant and choleretic activity of flavonoid drugs. Vrach Delo 1988; 12: 52-4. PMID: 3245169
  41. Yousefsani BS, Mehri S, Pourahmad J, Hosseinzadeh H. Crocin prevents sub-cellular organelle damage, proteolysis and apoptosis in rat hepatocytes: A justification for its hepatoprotection. Iran J Pharm Res 2018; 17(2): 553-62. PMID: 29881413
  42. Maliakal PP, Wanwimolruk S. Effect of herbal teas on hepatic drug metabolizing enzymes in rats. J Pharm Pharmacol 2010; 53(10): 1323-9. doi: 10.1211/0022357011777819 PMID: 11697539
  43. Lee MY, Yuk JE, Kwon OK, et al. Anti-inflammatory and anti-asthmatic effects of Viola mandshurica W. Becker (VM) ethanolic (EtOH) extract on airway inflammation in a mouse model of allergic asthma. J Ethnopharmacol 2010; 127(1): 159-64. doi: 10.1016/j.jep.2009.09.033 PMID: 19786084
  44. Bellik Y, Boukraâ L, Alzahrani H, et al. Molecular mechanism underlying anti-inflammatory and anti-allergic activities of phytochemicals: An update. Molecules 2012; 18(1): 322-53. doi: 10.3390/molecules18010322 PMID: 23271469
  45. Kotov S, Gontova T, Kononenko N, Chernyavski E, Chikitkina V. Phytochemical analysis and anti-allergic activity of a combined herbal medicine based on bur-marigold, calendula and hawthorn. Pharmacia 2022; 69(1): 237-47. doi: 10.3897/pharmacia.69.e77624
  46. Plants of the World Online. Available from: https://powo.science.kew.org/.
  47. Gruenwald J, Brendler T, Jaenicke C. Grape seed extract (Vitis vinifera) alleviate neurotoxicity and hepatotoxicity induced by lead acetate in male albino rats. J Behav Brain Sci 2012; 2(2): 176-84.
  48. Thomson H. PDR for herbal medicines. North Olmsted: Medical Economics Company 1998.
  49. Procházková D, Boušová I, Wilhelmová N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia 2011; 82(4): 513-23. doi: 10.1016/j.fitote.2011.01.018 PMID: 21277359
  50. Halliwell B. Reactive oxygen species in living systems: Source, biochemistry, and role in human disease. Am J Med 1991; 91(3): S14-22. doi: 10.1016/0002-9343(91)90279-7 PMID: 1928205
  51. Wojcikowski K, Johnson DW, Gobe G. Herbs or natural substances as complementary therapies for chronic kidney disease: Ideas for future studies. J Lab Clin Med 2006; 147(4): 160-6. doi: 10.1016/j.lab.2005.11.011 PMID: 16581343
  52. Sakihama Y, Cohen MF, Grace SC, Yamasaki H. Plant phenolic antioxidant and prooxidant activities: Phenolics-induced oxidative damage mediated by metals in plants. Toxicology 2002; 177(1): 67-80. doi: 10.1016/S0300-483X(02)00196-8 PMID: 12126796
  53. Wang D, Bădărau AS, Swamy MK, et al. Arctium species secondary metabolites chemodiversity and bioactivities. Front Plant Sci 2019; 10: 834. doi: 10.3389/fpls.2019.00834 PMID: 31338098
  54. Chan YS, Cheng LN, Wu JH, et al. A review of the pharmacological effects of Arctium lappa (burdock). Inflammopharmacology 2011; 19(5): 245-54. doi: 10.1007/s10787-010-0062-4 PMID: 20981575
  55. Zhao J, Evangelopoulos D, Bhakta S, Gray AI, Seidel V. Antitubercular activity of Arctium lappa and Tussilago farfara extracts and constituents. J Ethnopharmacol 2014; 155(1): 796-800. doi: 10.1016/j.jep.2014.06.034 PMID: 24955560
  56. Alhusaini A, Fadda L, Hasan IH, et al. Arctium lappa root extract prevents lead-induced liver injury by attenuating oxidative stress and inflammation, and activating Akt/GSK-3β signaling. Antioxidants 2019; 8(12): 582. doi: 10.3390/antiox8120582 PMID: 31771282
  57. Kwon YK, Choi SJ, Kim CR, et al. Antioxidant and cognitive-enhancing activities of Arctium lappa L. roots in Aβ1-42-induced mouse model. Appl Biol Chem 2016; 59(4): 553-65. doi: 10.1007/s13765-016-0195-2
  58. Jiang XW, Bai JP, Zhang Q, et al. Caffeoylquinic acid derivatives from the roots of Arctium lappa L. (burdock) and their structure–activity relationships (SARs) of free radical scavenging activities. Phytochem Lett 2016; 15: 159-63. doi: 10.1016/j.phytol.2015.12.008
  59. Alsayied NF, Fernández JA, Schwarzacher T, Heslop-Harrison JS. Diversity and relationships of Crocus sativus and its relatives analysed by inter-retroelement amplified polymorphism (IRAP). Ann Bot 2015; 116(3): 359-68. doi: 10.1093/aob/mcv103 PMID: 26138822
  60. WHO. WHO monographs on selected medicinal plants. Geneva: World Health Organization 2007; Vol. 3.
  61. Ahrazem O, Rubio-Moraga A, Nebauer SG, Molina RV, Gómez-Gómez L. Saffron: Its phytochemistry, developmental processes, and biotechnological prospects. J Agric Food Chem 2015; 63(40): 8751-64. doi: 10.1021/acs.jafc.5b03194 PMID: 26414550
  62. Mykhailenko O, Desenko V, Ivanauskas L, Georgiyants V. Standard operating procedure of ukrainian saffron cultivation according with good agricultural and collection practices to assure quality and traceability. Ind Crops Prod 2020; 151: 112376. doi: 10.1016/j.indcrop.2020.112376
  63. Abu-Izneid T, Rauf A, Khalil AA, et al. Nutritional and health beneficial properties of saffron (Crocus sativus L): A comprehensive review. Crit Rev Food Sci Nutr 2022; 62(10): 2683-706. doi: 10.1080/10408398.2020.1857682 PMID: 33327732
  64. Lu C, Ke L, Li J, et al. Saffron (Crocus sativus L.) and health outcomes: A meta-research review of meta-analyses and an evidence mapping study. Phytomedicine 2021; 91: 153699. doi: 10.1016/j.phymed.2021.153699 PMID: 34419735
  65. Mykhailenko O, Bezruk I, Ivanauskas L, Georgiyants V. Comparative analysis of apocarotenoids and phenolic constituents of Crocus sativus stigmas from 11 countries: Ecological impact. Arch Pharm 2022; 355(4): 2100468. doi: 10.1002/ardp.202100468 PMID: 35048403
  66. Butnariu M, Quispe C, Herrera-Bravo J, et al. The pharmacological activities of Crocus sativus L.: A review based on the mechanisms and therapeutic opportunities of its phytoconstituents. Oxid Med Cell Longev 2022; 2022: 1-29. doi: 10.1155/2022/8214821 PMID: 35198096
  67. Jarukas L, Vitkevicius K, Mykhailenko O, Bezruk I, Georgiyants V, Ivanauskas L. Effective isolation of picrocrocin and crocins from Saffron: From HPTLC to working standard obtaining. Molecules 2022; 27(13): 4286. doi: 10.3390/molecules27134286 PMID: 35807531
  68. Kyriakoudi A, Z Tsimidou M. Latest advances in the extraction and determination of saffron apocarotenoids. Electrophoresis 2018; 39(15): 1846-59. doi: 10.1002/elps.201700455 PMID: 29392745
  69. Jarukas L, Mykhailenko O, Baranauskaite J, Marksa M, Ivanauskas L. Investigation of organic acids in saffron stigmas (Crocus sativus L.) extract by derivatization method and determination by GC/MS. Molecules 2020; 25(15): 3427. doi: 10.3390/molecules25153427 PMID: 32731562
  70. Farrin N, Ahmadikhatir S, Ostadrahimi A, Safaiyan A, Ahmadikhatir S. Saffron (Crocus sativus L.) supplements improve quality of life and appetite in atherosclerosis patients: A randomized clinical trial. J Res Med Sci 2022; 27(1): 30. doi: 10.4103/jrms.JRMS_1253_20 PMID: 35548173
  71. Xing B, Li S, Yang J, et al. Phytochemistry, pharmacology, and potential clinical applications of saffron: A review. J Ethnopharmacol 2021; 281: 114555. doi: 10.1016/j.jep.2021.114555 PMID: 34438035
  72. Zhou L, Cai Y, Yang L, Zou Z, Zhu J, Zhang Y. Comparative metabolomics analysis of stigmas and petals in Chinese saffron (Crocus sativus) by widely targeted metabolomics. Plants 2022; 11(18): 2427. doi: 10.3390/plants11182427 PMID: 36145828
  73. Mykhailenko O, Kovalyov V, Goryacha O, Ivanauskas L, Georgiyants V. Biologically active compounds and pharmacological activities of species of the genus Crocus: A review. Phytochemistry 2019; 162: 56-89. doi: 10.1016/j.phytochem.2019.02.004 PMID: 30856530
  74. Rahmani J, Manzari N, Thompson J, et al. The effect of saffron on weight and lipid profile: A systematic review, meta-analysis, and dose-response of randomized clinical trials. Phytother Res 2019; 33(9): 2244-55. doi: 10.1002/ptr.6420 PMID: 31264281
  75. Moratalla-López N, Bagur MJ, Lorenzo C, Salinas MEMR, Alonso GL. Bioactivity and bioavailability of the major metabolites of Crocus sativus L. flower. Molecules 2019; 24(15): 2827. doi: 10.3390/molecules24152827 PMID: 31382514
  76. Sun C, Nile SH, Zhang Y, et al. Novel insight into utilization of flavonoid glycosides and biological properties of saffron (Crocus sativus L.) flower byproducts. J Agric Food Chem 2020; 68(39): 10685-96. doi: 10.1021/acs.jafc.0c04076 PMID: 32924469
  77. Mykhailenko O, Ivanauskas L, Bezruk I, Petrikaitė V, Georgiyants V. Application of quality by design approach to the pharmaceutical development of anticancer crude extracts of crocus sativus perianth. Sci Pharm 2022; 90(1): 19. doi: 10.3390/scipharm90010019
  78. Bathaie SZ, Mousavi SZ. Historical uses of saffron: Identifying potential new avenues for modern Research. Avicenna J Phytomed 2011; 1: 57-66.
  79. Rezaee-Khorasany A, Razavi BM, Taghiabadi E, Tabatabaei Yazdi A, Hosseinzadeh H. Effect of saffron (stigma of Crocus sativus L.) aqueous extract on ethanol toxicity in rats: A biochemical, histopathological and molecular study. J Ethnopharmacol 2019; 237: 286-99. doi: 10.1016/j.jep.2019.03.048 PMID: 30926569
  80. Popović-Djordjević JB, Kostić AŽ, Kiralan M. Antioxidant activities of bioactive compounds and various extracts obtained from saffron. InSaffron 2021; pp. 41-97.
  81. Hatziagapiou K, Lambrou GI. The protective role of Crocus sativus L. (Saffron) against ischemia-reperfusion injury, hyperlipidemia and atherosclerosis: Nature opposing cardiovascular diseases. Curr Cardiol Rev 2018; 14(4): 272-89. doi: 10.2174/1573403X14666180628095918 PMID: 29952263
  82. Bakshi HA, Faruck HL, Yadav SA, Tambuwala MM. The remarkable pharmacological efficacy of saffron spice via antioxidant, immunomodulatory, and antitumor activities. Saffron 2020: pp. 245-62.
  83. Jiang Z, Gu M, Liu J, Li H, Peng J, Zhang Y. Anticancer activity of crocin against cervical carcinoma (HeLa cells): Bioassessment and toxicity evaluation of crocin in male albino rats. J Photochem Photobiol B 2018; 180: 118-24. doi: 10.1016/j.jphotobiol.2018.01.013 PMID: 29413694
  84. Akhondzadeh S, Fallah-Pour H, Afkham K, Jamshidi AH, Khalighi-Cigaroudi F. Comparison of Crocus sativus L. and imipramine in the treatment of mild to moderate depression: A pilot double-blind randomized trial ISRCTN45683816. BMC Complement Altern Med 2004; 4(1): 12. doi: 10.1186/1472-6882-4-12 PMID: 15341662
  85. Bian Y, Zhao C, Lee SMY. Neuroprotective potency of saffron against neuropsychiatric diseases, neurodegenerative diseases, and other brain disorders: From bench to bedside. Front Pharmacol 2020; 11: 579052. doi: 10.3389/fphar.2020.579052 PMID: 33117172
  86. Mykhailenko O, Petrikaite V, Korinek M, et al. Bio-guided bioactive profiling and HPLC-DAD fingerprinting of Ukrainian saffron (Crocus sativus stigmas): Moving from correlation toward causation. BMC Complem Med Ther. 2021; 21: p. (1)203.
  87. Cerdá-Bernad D, Valero-Cases E, Pastor JJ, Frutos MJ. Saffron bioactives crocin, crocetin and safranal: Effect on oxidative stress and mechanisms of action. Crit Rev Food Sci Nutr 2022; 62(12): 3232-49. doi: 10.1080/10408398.2020.1864279 PMID: 33356506
  88. Broadhead GK, Grigg JR, McCluskey P, Hong T, Schlub TE, Chang AA. Saffron therapy for the treatment of mild/moderate age-related macular degeneration: A randomised clinical trial. Graefes Arch Clin Exp Ophthalmol 2019; 257(1): 31-40. doi: 10.1007/s00417-018-4163-x PMID: 30343354
  89. Marangoni D, Falsini B, Piccardi M, et al. Functional effect of Saffron supplementation and risk genotypes in early age-related macular degeneration: A preliminary report. J Transl Med 2013; 11(1): 228. doi: 10.1186/1479-5876-11-228 PMID: 24067115
  90. Jessie SW, Krishnakantha TP. Inhibition of human platelet aggregation and membrane lipid peroxidation by food spice, saffron. Mol Cell Biochem 2005; 278(1-2): 59-63. doi: 10.1007/s11010-005-5155-9 PMID: 16180089
  91. Hosseinzadeh H, Talebzadeh F. Anticonvulsant evaluation of safranal and crocin from Crocus sativus in mice. Fitoterapia 2005; 76(7-8): 722-4. doi: 10.1016/j.fitote.2005.07.008 PMID: 16253437
  92. Premkumar K, Thirunavukkarasu C, Abraham SK, Santhiya ST, Ramesh A. Protective effect of saffron (Crocus sativus L.) aqueous extract against genetic damage induced by anti-tumor agents in mice. Hum Exp Toxicol 2006; 25(2): 79-84. doi: 10.1191/0960327106ht589oa PMID: 16539212
  93. Ye H, Luo J, Hu D, et al. Total flavonoids of Crocus sativus petals release tert-butyl hydroperoxide-induced oxidative stress in BRL-3A cells. Oxid Med Cell Longev 2021; 2021: 1-15. doi: 10.1155/2021/5453047 PMID: 34194602
  94. Omidi A, Riahinia N, Montazer Torbati MB, Behdani MA. Hepatoprotective effect of Crocus sativus (saffron) petals extract against acetaminophen toxicity in male Wistar rats. Avicenna J Phytomed 2014; 4(5): 330-6. PMID: 25386395
  95. Hoshyar R, Sebzari A, Balforoush M, Valavi M, Hosseini M. The impact of Crocus sativus stigma against methotrexate-induced liver toxicity in rats. J Complement Integr Med 2019; 17(2) doi: 10.1515/jcim-2019-0201 PMID: 31675349
  96. Lari P, Abnous K, Imenshahidi M, Rashedinia M, Razavi M, Hosseinzadeh H. Evaluation of diazinon-induced hepatotoxicity and protective effects of crocin. Toxicol Ind Health 2015; 31(4): 367-76. doi: 10.1177/0748233713475519 PMID: 23406950
  97. Vahdati Hassani F, Mehri S, Abnous K, Birner-Gruenberger R, Hosseinzadeh H. Protective effect of crocin on BPA-induced liver toxicity in rats through inhibition of oxidative stress and downregulation of MAPK and MAPKAP signaling pathway and miRNA-122 expression. Food Chem Toxicol 2017; 107(Pt A): 395-405. doi: 10.1016/j.fct.2017.07.007 PMID: 28689058
  98. Aras İ, Bayram İ, Oto G, Erten R, Öter Almali A, Akman Ilik Z. Saffron and saffron ingredients like safranal and crocin’s cytoprotective effects on carbon tetrachloride induced liver damage. East J Med 2022; 27(3): 424-31. doi: 10.5505/ejm.2022.34356
  99. Razavi BM, Hosseinzadeh H. Saffron as an antidote or a protective agent against natural or chemical toxicities. Daru 2015; 23(1): 31. doi: 10.1186/s40199-015-0112-y PMID: 25928729
  100. Zarei B, Elyasi S. Saffron nephroprotective effects against medications and toxins: A review of preclinical data. Iran J Basic Med Sci 2022; 25(4): 419-34. PMID: 35656071
  101. Hosseinzadeh H, Sadeghnia HR. Safranal, a constituent of Crocus sativus (saffron), attenuated cerebral ischemia induced oxidative damage in rat hippocampus. J Pharm Pharm Sci 2005; 8(3): 394-9. PMID: 16401389
  102. Hosseinzadeh H, Sadeghnia H, Rahimi A. Effect of safranal on extracellular hippocampal levels of glutamate and aspartate during kainic Acid treatment in anesthetized rats. Planta Med 2008; 74(12): 1441-5. doi: 10.1055/s-2008-1081335 PMID: 18816431
  103. Ahmad AS, Ansari MA, Ahmad M, et al. Neuroprotection by crocetin in a hemi-parkinsonian rat model. Pharmacol Biochem Behav 2005; 81(4): 805-13. doi: 10.1016/j.pbb.2005.06.007 PMID: 16005057
  104. Bukhari SI, Manzoor M, Dhar MK. A comprehensive review of the pharmacological potential of Crocus sativus and its bioactive apocarotenoids. Biomed Pharmacother 2018; 98: 733-45. doi: 10.1016/j.biopha.2017.12.090 PMID: 29306211
  105. Mir MA, Rameashkannan MV, Raj JA, Malik AH, Rajesh TS. Phytochemical and pharmacological profile of Crocus sativus L. by-products found in Kashmir. Acta Hortic 2018; (1200): 213-26. doi: 10.17660/ActaHortic.2018.1200.35
  106. Kakouri E, Daferera D, Paramithiotis S, Astraka K, Drosinos E, Polissiou M. Crocus sativus L. tepals: The natural source of antioxidant and antimicrobial factors. J Appl Res Med Aromat Plants 2016; 2016: 4.
  107. Frutos MJ. Nonvitamin and Nonmineral Nutritional Supplements. Amsterdam: Elsevier 2019.
  108. Miraj S, Kiani S. Study of therapeutic effects of Cynara scolymus L.: A review. Pharm Lett 2016; 8(9): 168-73.
  109. WHO. World Health Organization: Geneva. 2009.
  110. Valenzuela A, Aspillaga M, Vial S, Guerra R. Selectivity of silymarin on the increase of the glutathione content in different tissues of the rat. Planta Med 1989; 55(5): 420-2. doi: 10.1055/s-2006-962056 PMID: 2813578
  111. Salem MB, Affes H, Ksouda K, et al. Pharmacological studies of artichoke leaf extract and their health benefits. Plant Foods Hum Nutr 2015; 70(4): 441-53. doi: 10.1007/s11130-015-0503-8 PMID: 26310198
  112. Zhu X, Zhang H, Lo R. Phenolic compounds from the leaf extract of artichoke (Cynara scolymus L.) and their antimicrobial activities. J Agric Food Chem 2004; 52(24): 7272-8. doi: 10.1021/jf0490192 PMID: 15563206
  113. Mossi A, Echeverrigaray S. In II WOCMAP Congress Medicinal and Aromatic Plants, Part 2: Pharmacognosy, Pharmacology, Phytomedicine. Toxicology 1997; 501: 111-4.
  114. Aksu Ö, Altinterim B. Hepatoprotective effects of artichoke (Cynara scolymus). Bilim ve Genclik Dergisi 2013; 1(2): 44-9.
  115. Bekheet S. In vitro biomass production of liver-protective compounds from Globe artichoke (Cynara scolymus L.) and Milk thistle (Silybum marianum) plants. Emir J Food Agric 2011; 23(5): 473.
  116. Betancor-Fernández A, Pérez-Gálvez A, Sies H, Stahl W. Screening pharmaceutical preparations containing extracts of turmeric rhizome, artichoke leaf, devil’s claw root and garlic or salmon oil for antioxidant capacity. J Pharm Pharmacol 2010; 55(7): 981-6. doi: 10.1211/0022357021468 PMID: 12906755
  117. Colak E, Ustuner MC, Tekin N, et al. The hepatocurative effects of Cynara scolymus L. leaf extract on carbon tetrachloride-induced oxidative stress and hepatic injury in rats. Springerplus 2016; 5(1): 216. doi: 10.1186/s40064-016-1894-1 PMID: 27026910
  118. Pereira C, Calhelha RC, Barros L, Ferreira ICFR. Antioxidant properties, anti-hepatocellular carcinoma activity and hepatotoxicity of artichoke, milk thistle and borututu. Ind Crops Prod 2013; 49: 61-5. doi: 10.1016/j.indcrop.2013.04.032
  119. Gebhardt R, Fausel M. Antioxidant and hepatoprotective effects of artichoke extracts and constituents in cultured rat hepatocytes. Toxicol In Vitro 1997; 11(5): 669-72. doi: 10.1016/S0887-2333(97)00078-7 PMID: 20654368
  120. Valentão P, Fernandes E, Carvalho F, Andrade PB, Seabra RM, Bastos ML. Antioxidant activity of Centaurium erythraea infusion evidenced by its superoxide radical scavenging and xanthine oxidase inhibitory activity. J Agric Food Chem 2001; 49(7): 3476-9. doi: 10.1021/jf001145s PMID: 11453794
  121. Popular U. Alcachofra-Cynara scolymus. CMAJ 2003; 169(12): 1269-73. PMID: 14662662
  122. Tedeschi M, Bohm S, Di Re F, et al. Glutathione and detoxification. Cancer Treat Rev 1990; 17(2-3): 203-8. doi: 10.1016/0305-7372(90)90048-K PMID: 2272034
  123. Özdemir N, Eröksüz Y, Pamukçu E, Kandemir FM, Kaymaz MB. Effects of aqueous artichoke (Cynara scolymus) leaf extract on hepatic damage generated by alpha-amanitine. Kafkas Univ Vet Fak Derg 2017; 23(1): 155-160.
  124. Amini MR, Sheikhhossein F, Talebyan A, Bazshahi E, Djafari F, Hekmatdoost A. Effects of artichoke supplementation on liver enzymes: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr Res 2022; 11(3): 228-39. doi: 10.7762/cnr.2022.11.3.228 PMID: 35949559
  125. Zi X, Mukhtar H, Agarwal R. Novel cancer chemopreventive effects of a flavonoid antioxidant silymarin: Inhibition of mRNA expression of an endogenous tumor promoter TNF α. Biochem Biophys Res Commun 1997; 239(1): 334-9. doi: 10.1006/bbrc.1997.7375 PMID: 9345320
  126. Numan IT, Hamad MN, Fadhil AA, Najim SM. The possible cardio-protective effects of ethanolic artichoke extract against 5-fluorouracil induced cardiac toxicity in rats. Iraqi J Pharm Sci 2016; 25(1): 1-5. doi: 10.31351/vol25iss1pp1-5
  127. Jiménez-Escrig A, Dragsted LO, Daneshvar B, Pulido R, Saura- Calixto F. In vitro antioxidant activities of edible artichoke (Cynara scolymus L.) and effect on biomarkers of antioxidants in rats. J Agric Food Chem 2003; 51(18): 5540-5. doi: 10.1021/jf030047e PMID: 12926911
  128. da Silva RP, Jacociunas LV, de Carli RF, et al. Genotoxic and chemopreventive assessment of Cynara scolymus L. aqueous extract in a human-derived liver cell line. Drug Chem Toxicol 2017; 40(4): 484-8. doi: 10.1080/01480545.2017.1279625 PMID: 28147701
  129. Presentation to American Public Health Association. Risk assessment: Are children its first victims. 1996.
  130. Carpentieri S, Augimeri G, Ceramella J, et al. Antioxidant and anti-inflammatory effects of extracts from pulsed electric field-treated artichoke by-products in lipopolysaccharide-stimulated human THP-1 macrophages. Foods 2022; 11(15): 2250. doi: 10.3390/foods11152250 PMID: 35954020
  131. Rejeb IB, Dhen N, Gargouri M, Boulila A. Chemical composition, antioxidant potential and enzymes inhibitory properties of globe artichoke by-products. Chem Biodivers 2020; 17(9): cbdv.202000073. doi: 10.1002/cbdv.202000073 PMID: 32628807
  132. Kalthoff S, Strassburg CP. Contribution of human UDP-glucuronosyltransferases to the antioxidant effects of propolis, artichoke and silymarin. Phytomedicine 2019; 56: 35-9. doi: 10.1016/j.phymed.2018.08.013 PMID: 30668351
  133. WHO. World Health Organization 1999.
  134. ATEŞ. Antimicrobial activities of various medicinal and commercial plant extracts. Turk J Biol 2003; 27(3): 157-62.
  135. Tohma HS, Gulçin I. Antioxidant and radical scavenging activity of aerial parts and roots of Turkish liquorice (Glycyrrhiza glabra L.). Int J Food Prop 2010; 13(4): 657-71. doi: 10.1080/10942911003773916
  136. Bahmani M, Rafieian-Kopaei M, Jeloudari M, et al. A review of the health effects and uses of drugs of plant licorice (Glycyrrhiza glabra L.) in Iran. Asian Pac J Trop Dis 2014; 4(S2): S847-9. doi: 10.1016/S2222-1808(14)60742-8
  137. Fenwick GR, Lutomski J, Nieman C. Liquorice, Glycyrrhiza glabra L.-Composition, uses and analysis. Food Chem 1990; 38(2): 119-43. doi: 10.1016/0308-8146(90)90159-2
  138. Stickel F, Schuppan D. Herbal medicine in the treatment of liver diseases. Dig Liver Dis 2007; 39(4): 293-304. doi: 10.1016/j.dld.2006.11.004 PMID: 17331820
  139. Khan MTH, Ather A, Thompson KD, Gambari R. Extracts and molecules from medicinal plants against herpes simplex viruses. Antiviral Res 2005; 67(2): 107-19. doi: 10.1016/j.antiviral.2005.05.002 PMID: 16040137
  140. Seo JY, Lee YS, Kim HJ, et al. Dehydroglyasperin C isolated from licorice caused Nrf2-mediated induction of detoxifying enzymes. J Agric Food Chem 2010; 58(3): 1603-8. doi: 10.1021/jf9036062 PMID: 20088509
  141. Wahab S, Annadurai S, Abullais SS, et al. Glycyrrhiza glabra (Licorice): A comprehensive review on its phytochemistry, biological activities, clinical evidence and toxicology. Plants 2021; 10(12): 2751. doi: 10.3390/plants10122751 PMID: 34961221
  142. Damle M. Glycyrrhiza glabra (Liquorice)-A potent medicinal herb. Int J Herb Med 2014; 2(2): 132-6.
  143. Cheel J, Antwerpen PV, Tůmová L, et al. Free radical-scavenging, antioxidant and immunostimulating effects of a licorice infusion (Glycyrrhiza glabra L.). Food Chem 2010; 122(3): 508-17. doi: 10.1016/j.foodchem.2010.02.060
  144. Li X, Sun R, Liu R. Natural products in licorice for the therapy of liver diseases: Progress and future opportunities. Pharmacol Res 2019; 144: 210-26. doi: 10.1016/j.phrs.2019.04.025 PMID: 31022523
  145. Ding X, Kaminsky LS. Human extrahepatic cytochromes P450: Function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu Rev Pharmacol Toxicol 2003; 43(1): 149-73. doi: 10.1146/annurev.pharmtox.43.100901.140251 PMID: 12171978
  146. Sharma V, Katiyar A, Agrawal R. Glycyrrhiza glabra: Chemistry and pharmacological activity. Sweetener 2018; 2018(1): 87-100.
  147. Al-Snafi AE. Glycyrrhiza glabra: A phytochemical and pharmacological review. IOSR J Pharm 2018; 8(6): 1-17.
  148. Wang C, Duan X, Sun X, et al. Protective effects of glycyrrhizic acid from edible botanical Glycyrrhiza glabra against non-alcoholic steatohepatitis in mice. Food Funct 2016; 7(9): 3716-23. doi: 10.1039/C6FO00773B PMID: 27487733
  149. Jung JC, Lee YH, Kim SH, et al. Hepatoprotective effect of licorice, the root of Glycyrrhiza uralensis Fischer, in alcohol-induced fatty liver disease. BMC Complement Altern Med 2015; 16(1): 19. doi: 10.1186/s12906-016-0997-0 PMID: 26801973
  150. Huang X, Qin J, Lu S. Magnesium isoglycyrrhizinate protects hepatic L02 cells from ischemia/reperfusion induced injury. Int J Clin Exp Pathol 2014; 7(8): 4755-64. PMID: 25197346
  151. Liu M, Zheng B, Liu P, et al. Exploration of the hepatoprotective effect and mechanism of magnesium isoglycyrrhizinate in mice with arsenic trioxide-induced acute liver injury. Mol Med Rep 2021; 23(6): 438. doi: 10.3892/mmr.2021.12077 PMID: 33846815
  152. Wang KL, Yu YC, Chen HY, et al. Recent advances in Glycyrrhiza glabra (Licorice)-containing herbs alleviating radiotherapy- and chemotherapy-induced adverse reactions in cancer treatment. Metabolites 2022; 12(6): 535. doi: 10.3390/metabo12060535 PMID: 35736467
  153. Pal SK, Shukla Y. Herbal medicine: Current status and the future. Asian Pac J Cancer Prev 2003; 4(4): 281-8. PMID: 14728584
  154. Manns MP, Wedemeyer H, Singer A, et al. Glycyrrhizin in patients who failed previous interferon alpha-based therapies: Biochemical and histological effects after 52 weeks. J Viral Hepat 2012; 19(8): 537-46. doi: 10.1111/j.1365-2893.2011.01579.x PMID: 22762137
  155. Janbaz KH, Saeed SA, Gilani AH. Protective effect of rutin on paracetamol- and CCl4-induced hepatotoxicity in rodents. Fitoterapia 2002; 73(7-8): 557-63. doi: 10.1016/S0367-326X(02)00217-4 PMID: 12490212
  156. Pljevljakušić D, Bigović D, Janković T, Jelačić S, Šavikin K. Sandy everlasting (Helichrysum arenarium (L.) Moench): Botanical, chemical and biological properties. Front Plant Sci 2018; 9: 1123. doi: 10.3389/fpls.2018.01123 PMID: 30131818
  157. Bougatsos C, Meyer JJM, Magiatis P, Vagias C, Chinou IB. Composition and antimicrobial activity of the essential oils of Helichrysum kraussii Sch. Bip. andH. rugulosum Less. from South Africa. Flavour Fragrance J 2003; 18(1): 48-51. doi: 10.1002/ffj.1152
  158. Pyo YH, Lee TC, Logendra L, Rosen RT. Antioxidant activity and phenolic compounds of Swiss chard (Beta vulgaris subspecies cycla) extracts. Food Chem 2004; 85(1): 19-26. doi: 10.1016/S0308-8146(03)00294-2
  159. Bigovic D, Brankovic S, Kitic D, et al. Relaxant effect of the ethanol extract of Helichrysum plicatum (Asteraceae) on isolated rat ileum contractions. Molecules 2010; 15(5): 3391-401. doi: 10.3390/molecules15053391 PMID: 20657488
  160. Bigović D, Šavikin K, Janković T, et al. Antiradical and cytotoxic activity of different Helichrysum plicatum flower extracts. Nat Prod Commun 2011; 6(6): 1934578X1100600. doi: 10.1177/1934578X1100600617 PMID: 21815418
  161. WHO. World Health Organization 2010.
  162. Schnaubelt K. Essential oil therapy according to traditional Chinese medical concepts. Int J Aromather 2005; 15(2): 98-105. doi: 10.1016/j.ijat.2005.03.002
  163. Tepe B, Sökmen M, Akpulat HA, Sokmen A. In vitro antioxidant activities of the methanol extracts of four Helichrysum species from Turkey. Food Chem 2005; 90(4): 685-9. doi: 10.1016/j.foodchem.2004.04.030
  164. Kladar NV, Anačkov GT, Rat MM, et al. Biochemical characterization of Helichrysum italicum (Roth) G.Don subsp. italicum (Asteraceae) from Montenegro: Phytochemical screening, chemotaxonomy, and antioxidant properties. Chem Biodivers 2015; 12(3): 419-31. doi: 10.1002/cbdv.201400174 PMID: 25766915
  165. Prior RL, Cao G. Antioxidant phytochemicals in fruits and vegetables: Diet and health implications. HortScience 2000; 35(4): 588-92. doi: 10.21273/HORTSCI.35.4.588
  166. Shikov AN, Pozharitskaya ON, Makarov VG, Wagner H, Verpoorte R, Heinrich M. Medicinal plants of the Russian pharmacopoeia; Their history and applications. J Ethnopharmacol 2014; 154(3): 481-536. doi: 10.1016/j.jep.2014.04.007 PMID: 24742754
  167. Czinner E, Hagymási K, Blázovics A, Kéry Á, Szőke É, Lemberkovics É. In vitro antioxidant properties of Helichrysum arenarium (L.) Moench. J Ethnopharmacol 2000; 73(3): 437-43. doi: 10.1016/S0378-8741(00)00304-4 PMID: 11090997
  168. Franco JV, Arancibia M, Szeinman DJ, Alonso IT, Vietto V. Herbal (non-Chinese) medicines for functional dyspepsia. Cochrane Database Syst Rev 2019; 2019(4): CD013323.
  169. WHO. World Health Organization: Geneva, 2002. 2002.
  170. Kleemann B, Loos B, Scriba TJ, Lang D, Davids LM. St John’s Wort (Hypericum perforatum L.) photomedicine: Hypericin-photodynamic therapy induces metastatic melanoma cell death. PLoS One 2014; 9(7): e103762. doi: 10.1371/journal.pone.0103762 PMID: 25076130
  171. Karppinen K, Hokkanen J, Mattila S, Neubauer P, Hohtola A. Octaketide-producing type III polyketide synthase from Hypericum perforatum is expressed in dark glands accumulating hypericins. FEBS J 2008; 275(17): 4329-42. doi: 10.1111/j.1742-4658.2008.06576.x PMID: 18647343
  172. Nobakht SZ, Akaberi M, Mohammadpour AH, Tafazoli Moghadam A, Emami SA. Hypericum perforatum: Traditional uses, clinical trials, and drug interactions. Iran J Basic Med Sci 2022; 25(9): 1045-58. PMID: 36246064
  173. Barnes J, Anderson LA, Phillipson JD, Newall CA. Herbal medicines. London: Pharmaceutical press 2007.
  174. Cakir M, Duzova H, Baysal I, et al. The effect of Hypericum perforatum on kidney ischemia/reperfusion damage. Ren Fail 2017; 39(1): 385-91. doi: 10.1080/0886022X.2017.1287734 PMID: 28209087
  175. Papetti A, Daglia M, Gazzani G. Anti- and pro-oxidant activity of water soluble compounds in Cichorium intybus var. silvestre (Treviso red chicory). J Pharm Biomed Anal 2002; 30(4): 939-45. doi: 10.1016/S0731-7085(02)00473-9 PMID: 12408883
  176. Okmen G, Balpınar N. The biological activities of Hypericum perforatum L. Afr J Tradit Complement Altern Med 2016; 14(1): 213-8. doi: 10.21010/ajtcam.v14i1.23 PMID: 28480399
  177. Pompella A, Visvikis A, Paolicchi A, Tata VD, Casini AF. The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol 2003; 66(8): 1499-503. doi: 10.1016/S0006-2952(03)00504-5 PMID: 14555227
  178. Wang Z, Gorski J, Hamman M, Huang S, Lesko L, Hall S. The effects of St John’s wort (Hypericum perforatum) on human cytochrome P450 activity. Clin Pharmacol Ther 2001; 70(4): 317-26. doi: 10.1016/S0009-9236(01)17221-8 PMID: 11673747
  179. Dürr D, Stieger B, Kullak-Ublick GA, et al. St John’s Wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4. Clin Pharmacol Ther 2000; 68(6): 598-604. doi: 10.1067/mcp.2000.112240 PMID: 11180019
  180. Cott JM. Herb-drug interactions: Focus on pharmacokinetics. CNS Spectr 2001; 6(10): 827-32. doi: 10.1017/S1092852900001644 PMID: 15334037
  181. Moore LB, Goodwin B, Jones SA, et al. St. John’s wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proc Natl Acad Sci USA 2000; 97(13): 7500-2. doi: 10.1073/pnas.130155097 PMID: 10852961
  182. Wentworth JM, Agostini M, Love J, Schwabe JW, Chatterjee VK. St John’s wort, a herbal antidepressant, activates the steroid X receptor. J Endocrinol 2000; 166(3): R11-6. doi: 10.1677/joe.0.166r011 PMID: 10974665
  183. Kliewer SA. The nuclear pregnane X receptor regulates xenobiotic detoxification. J Nutr 2003; 133(7) (Suppl.): 2444S-7S. doi: 10.1093/jn/133.7.2444S PMID: 12840222
  184. Sun CP, Jia ZL, Huo XK, et al. Medicinal Inula species: Phytochemistry, biosynthesis, and bioactivities. Am J Chin Med 2021; 49(2): 315-58. doi: 10.1142/S0192415X21500166 PMID: 33622212
  185. Stojanović-Radić Z, Čomić L, Radulović N, et al. Antistaphylococcal activity of Inula helenium L. root essential oil: Eudesmane sesquiterpene lactones induce cell membrane damage. Eur J Clin Microbiol Infect Dis 2012; 31(6): 1015-25. doi: 10.1007/s10096-011-1400-1 PMID: 21901633
  186. Orhan N, Gökbulut A, Deliorman Orhan D. Antioxidant potential and carbohydrate digestive enzyme inhibitory effects of five Inula species and their major compounds. S Afr J Bot 2017; 111: 86-92. doi: 10.1016/j.sajb.2017.03.040
  187. Bourrel C, Vilarem G, Perineau F. Chemical analysis, bacteriostatic and fungistatic properties of the essential oil of elecampane (Inula helenium L.). J Essent Oil Res 1993; 5(4): 411-7. doi: 10.1080/10412905.1993.9698251
  188. Seo JY, Lim SS, Kim JR, et al. Nrf2-mediated induction of detoxifying enzymes by alantolactone present in Inula helenium. Phytother Res 2008; 22(11): 1500-5. doi: 10.1002/ptr.2521 PMID: 18702092
  189. Seo JY, Park J, Kim HJ, et al. Isoalantolactone from Inula helenium caused Nrf2-mediated induction of detoxifying enzymes. J Med Food 2009; 12(5): 1038-45. doi: 10.1089/jmf.2009.0072 PMID: 19857067
  190. Igwe EO, Charlton KE. A systematic review on the health effects of plums (Prunus domestica and Prunus salicina). Phytother Res 2016; 30(5): 701-31. doi: 10.1002/ptr.5581 PMID: 26992121
  191. Nighat S. Prunus domestica: A review. Asian J Pharm Pharmacol 2020; 4(3): 21-9.
  192. Stacewicz-Sapuntzakis M. Dried plums and their products: Composition and health effects-an updated review. Crit Rev Food Sci Nutr 2013; 53(12): 1277-302. doi: 10.1080/10408398.2011.563880 PMID: 24090144
  193. Slimestad R, Vangdal E, Brede C. Analysis of phenolic compounds in six Norwegian plum cultivars (Prunus domestica L.). J Agric Food Chem 2009; 57(23): 11370-5. doi: 10.1021/jf902054x PMID: 19888727
  194. Lenchyk L, Upyr T, Mohammed S, Komisarenko M. Study of amino acid composition of Prunus domestica fruits pectin complex. Int J Pharm Chem 2020; 6(5): 60. doi: 10.11648/j.ijpc.20200605.12
  195. Mohammed S, Upyr T, Shapoval O, Lenchyk L, Georgiev K. Determination of phenolic compounds in Prunus domestica fruits extract and its pharmacological activity. J of IMAB 2019; 25(2): 2589-94.
  196. Piirainen L, Peuhkuri K, Bäckström K, Korpela R, Salminen S. Prune juice has a mild laxative effect in adults with certain gastrointestinal symptoms. Nutr Res 2007; 27(8): 511-3. doi: 10.1016/j.nutres.2007.06.008
  197. Senyuk I, Bashar A-S, Lenchyk L. Investigation of different substances catharic properties made from Prunus domestica. Ukraïns’kij bìofarmacevtičnij žurnal 2017; 2017: 21-5.
  198. Fung DYC, Thompson L. "Natural" suppression of the growth of foodborne pathogens in meat products. Int Rev Food Sci Technol 2009; 1: 80-1.
  199. Senjuk IV, Jabar ASB, Basim MS. Study of hepatoprotective action of extracts from garden plum fruit. Pharm Rev 2018; 4: 57-61.
  200. Upyr T, Mohammed S, Bashar A-J, Lenchyk L, Senyuk I, Kyslychenko V. Phytochemical and pharmacological study of polysaccharide complexes of Prunus domestica fruit. ScienceRise. Pharm Sci 2018; 2018: 32-7.
  201. Ferramosca A, Treppiccione L, Di Giacomo M, et al. Prunus mahaleb fruit extract prevents chemically induced colitis and enhances mitochondrial oxidative metabolism via the activation of the Nrf2 pathway. Mol Nutr Food Res 2019; 63(22): 1900350. doi: 10.1002/mnfr.201900350 PMID: 31410984
  202. Sabir S, Arsshad M, Asif S, Chaudhari SK. An insight into medicinal and therapeutic potential of Silybum marianum (L.) Gaertn. Int J Biosci 2014; 4(11): 104-15.
  203. Kumar T, Larokar YK, Iyer SK, Kumar A, Tripathi D. Phytochemistry and pharmacological activities of Silybum marianum: A review. Apex 2011; 10: 12.
  204. Saller R, Brignoli R, Melzer J, Meier R. An updated systematic review with meta-analysis for the clinical evidence of silymarin. Forsch Komplement Med 2008; 15(1): 9-20. doi: 10.1159/000113648 PMID: 18334810
  205. Balandrin M, Klocke J. Medicinal and Aromatic Plants I. Heidelberg: Springer 1988; pp. 3-36. doi: 10.1007/978-3-642-73026-9_1
  206. Khan MA, Abbasi BH, Ahmed N, Ali H. Effects of light regimes on in vitro seed germination and silymarin content in Silybum marianum. Ind Crops Prod 2013; 46: 105-10. doi: 10.1016/j.indcrop.2012.12.035
  207. Kurkin VA. Phenylpropanoids from medicinal plants: Distribution, classification, structural analysis, and biological activity. Chem Nat Compd 2003; 39(2): 123-53. doi: 10.1023/A:1024876810579
  208. Madani H, Talebolhos M, Asgary S, Naderi GH. Hepatoprotective activity of Silybum marianum and Cichorium intybus against thioacetamide in rat. Pak J Nutr 2007; 7(1): 172-6. doi: 10.3923/pjn.2008.172.176
  209. Flora K, Hahn M, Rosen H, Benner K. Milk thistle (Silybum marianum) for the therapy of liver disease. Am J Gastroenterol 1998; 93(2): 139-43. doi: 10.1111/j.1572-0241.1998.00139.x PMID: 9468229
  210. Shaker E, Mahmoud H, Mnaa S. Silymarin, the antioxidant component and Silybum marianum extracts prevent liver damage. Food Chem Toxicol 2010; 48(3): 803-6. doi: 10.1016/j.fct.2009.12.011 PMID: 20034535
  211. Milić N, Milošević N, Suvajdžić L, Žarkov M, Abenavoli L. New therapeutic potentials of milk thistle (Silybum marianum). Nat Prod Commun 2013; 8(12): 1934578X1300801. doi: 10.1177/1934578X1300801236 PMID: 24555302
  212. Fanoudi S, Alavi MS, Karimi G, Hosseinzadeh H. Milk thistle (Silybum marianum) as an antidote or a protective agent against natural or chemical toxicities: A review. Drug Chem Toxicol 2020; 43(3): 240-54. doi: 10.1080/01480545.2018.1485687 PMID: 30033764
  213. Bijak M. Silybin, a major bioactive component of milk thistle (Silybum marianum L. Gaernt.)-Chemistry, bioavailability, and metabolism. Molecules 2017; 22(11): 1942. doi: 10.3390/molecules22111942 PMID: 29125572
  214. Kamalakkannan N, Prince PSM. Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic wistar rats. Basic Clin Pharmacol Toxicol 2006; 98(1): 97-103. doi: 10.1111/j.1742-7843.2006.pto_241.x PMID: 16433898
  215. Al-Enazi MM. Combined therapy of rutin and silymarin has more protective effects on streptozotocin-induced oxidative stress in rats. J Appl Pharm Sci 2014; 4(1): 21-8. doi: 10.7324/JAPS.2014.40104
  216. Ikeda T, Yokomizo K, Okawa M, et al. Anti-herpes virus type 1 activity of oleanane-type triterpenoids. Biol Pharm Bull 2005; 28(9): 1779-81. doi: 10.1248/bpb.28.1779 PMID: 16141560
  217. Dehmlow C, Erhard J, de Groot H. Inhibition of Kupffer cell functions as an explanation for the hepatoprotective properties of silibinin. Hepatology 1996; 23(4): 749-54. doi: 10.1002/hep.510230415 PMID: 8666328
  218. Morazzoni P. Silybum marianum (Carduus marianus). Fitoterapia 1995; 66: 3-42.
  219. Karimi G, Vahabzadeh M, Lari P, Rashedinia M, Moshiri M. "Silymarin", a promising pharmacological agent for treatment of diseases. Iran J Basic Med Sci 2011; 14(4): 308-17. PMID: 23492971
  220. Abenavoli L, Capasso R, Milic N, Capasso F. Milk thistle in liver diseases: Past, present, future. Phytother Res 2010; 24(10): 1423-32. doi: 10.1002/ptr.3207 PMID: 20564545
  221. Pradhan SC, Girish C. Hepatoprotective herbal drug, silymarin from experimental pharmacology to clinical medicine. Indian J Med Res 2006; 124(5): 491-504. PMID: 17213517
  222. Vargas-Mendoza N, Madrigal-Santillán E, Morales-González A, et al. Hepatoprotective effect of silymarin. World J Hepatol 2014; 6(3): 144-9. doi: 10.4254/wjh.v6.i3.144 PMID: 24672644
  223. Spiridon I, Nechita C, Niculaua M, et al. Antioxidant and chemical properties of Inula helenium root extracts. Open Chem 2013; 11(10): 1699-709. doi: 10.2478/s11532-013-0295-3
  224. Ebrahimpour koujan S, Gargari BP, Mobasseri M, Valizadeh H, Asghari-Jafarabadi M. Effects of Silybum marianum (L.) Gaertn. (silymarin) extract supplementation on antioxidant status and hs-CRP in patients with type 2 diabetes mellitus: A randomized, triple-blind, placebo-controlled clinical trial. Phytomedicine 2015; 22(2): 290-6. doi: 10.1016/j.phymed.2014.12.010 PMID: 25765835
  225. Kim SH, Cheon HJ, Yun N, et al. Protective effect of a mixture of Aloe vera and Silybum marianum against carbon tetrachloride-induced acute hepatotoxicity and liver fibrosis. J Pharmacol Sci 2009; 109(1): 119-27. doi: 10.1254/jphs.08189FP PMID: 19151545
  226. Al-Malki AL, Abo-Golayel MK, Abo-Elnaga G, Al-Beshri H. Hepatoprotective effect of dandelion (Taraxacum officinale) against induced chronic liver cirrhosis. J Med Plants Res 2013; 7(20): 1494-505.
  227. Martinez M, Poirrier P, Chamy R, et al. Taraxacum officinale and related species-An ethnopharmacological review and its potential as a commercial medicinal plant. J Ethnopharmacol 2015; 169: 244-62. doi: 10.1016/j.jep.2015.03.067 PMID: 25858507
  228. Moon YJ, Wang X, Morris ME. Dietary flavonoids: Effects on xenobiotic and carcinogen metabolism. Toxicol In Vitro 2006; 20(2): 187-210. doi: 10.1016/j.tiv.2005.06.048 PMID: 16289744
  229. Hfaiedh M, Brahmi D, Zourgui L. Hepatoprotective effect of Taraxacum officinale leaf extract on sodium dichromate-induced liver injury in rats. Environ Toxicol 2016; 31(3): 339-49. doi: 10.1002/tox.22048 PMID: 25270677
  230. Pinelli P, Ieri F, Vignolini P, Bacci L, Baronti S, Romani A. Extraction and HPLC analysis of phenolic compounds in leaves, stalks, and textile fibers of Urtica dioica L. J Agric Food Chem 2008; 56(19): 9127-32. doi: 10.1021/jf801552d PMID: 18778029
  231. Devkota HP, Paudel KR, Khanal S, et al. Stinging nettle (Urtica dioica L.): Nutritional composition, bioactive compounds, and food functional properties. Molecules 2022; 27(16): 5219. doi: 10.3390/molecules27165219 PMID: 36014458
  232. Grauso L, de Falco B, Lanzotti V, Motti R. Stinging nettle, Urtica dioica L.: Botanical, phytochemical and pharmacological overview. Phytochem Rev 2020; 19(6): 1341-77. doi: 10.1007/s11101-020-09680-x
  233. Roschek B Jr, Fink RC, McMichael M, Alberte RS. Nettle extract (Urtica dioica) affects key receptors and enzymes associated with allergic rhinitis. Phytother Res 2009; 23(7): 920-6. doi: 10.1002/ptr.2763 PMID: 19140159
  234. Akbay P, Basaran AA, Undeger U, Basaran N. In vitro immunomodulatory activity of flavonoid glycosides from Urtica dioica L. Phytother Res 2003; 17(1): 34-7. doi: 10.1002/ptr.1068 PMID: 12557244
  235. Randall C, Meethan K, Randall H, Dobbs F. Nettle sting of Urtica dioica for joint pain - an exploratory study of this complementary therapy. Complement Ther Med 1999; 7(3): 126-31. doi: 10.1016/S0965-2299(99)80119-8 PMID: 10581821
  236. Upton R. Stinging nettles leaf (Urtica dioica L.): Extraordinary vegetable medicine. J Herb Med 2013; 3(1): 9-38. doi: 10.1016/j.hermed.2012.11.001
  237. Daoudi A, Benboubker H, Bousta D, Aarab L. Screening of fourteen, Moroccan medicinal plants for immunomodulating activities. Moroccan J Biol 2008; 1: 24-30.
  238. Viktorova J, Jandova Z, Madlenakova M, et al. Native phytoremediation potential of Urtica dioica for removal of PCBs and heavy metals can be improved by genetic manipulations using constitutive CaMV 35S promoter. PLoS One 2016; 11(12): e0167927. doi: 10.1371/journal.pone.0167927 PMID: 27930707
  239. Verma DK, Gupta AP, Dhakeray R. Removal of heavy metals from whole sphere by plants working as bioindicators–a review. Basic Res. J Pharm Sci 2011; 1: 1-7.
  240. Najafipour F, Rahimi AO, Mobaseri M, Agamohamadzadeh N, Nikoo A, Aliasgharzadeh A. Therapeutic effects of stinging nettle (Urtica dioica) in women with Hyperandrogenism. Int J Curr Res Acad Rev 2014; 2(7): 153-60.
  241. El OI, Tartouga MA, Loucif OR, Naimi D. Antioxidant and hepatoprotective effect of Urtica dioica extract against N-nitroso methyl urea induced injuries in mice. J Pharmacogn Phytother 2017; 9(2): 19-23. doi: 10.5897/JPP2016.0389
  242. Uyar A, Yener Z, Dogan A. Protective effects of Urtica dioica seed extract in aflatoxicosis: Histopathological and biochemical findings. Br Poult Sci 2016; 57(2): 235-45. doi: 10.1080/00071668.2015.1129664 PMID: 26947348
  243. Vukics V, Kery A, Bonn GK, Guttman A. Major flavonoid components of heartsease (Viola tricolor L.) and their antioxidant activities. Anal Bioanal Chem 2008; 390(7): 1917-25. doi: 10.1007/s00216-008-1885-3 PMID: 18259733
  244. Koike A, Barreira JCM, Barros L, Santos-Buelga C, Villavicencio ALCH, Ferreira ICFR. Edible flowers of Viola tricolor L. as a new functional food: Antioxidant activity, individual phenolics and effects of gamma and electron-beam irradiation. Food Chem 2015; 179: 6-14. doi: 10.1016/j.foodchem.2015.01.123 PMID: 25722133
  245. Carnat AP, Carnat A, Fraisse D, et al. Violarvensin, a new flavone di-C-glycoside from Viola arvensis. J Nat Prod 1998; 61(2): 272-4. doi: 10.1021/np9701485 PMID: 9548860
  246. Karim N, Khan I, Abdelhalim A, Khan A, Halim SA. Antidepressant potential of novel flavonoids derivatives from sweet violet (Viola odorata L.): Pharmacological, biochemical and computational evidences for possible involvement of serotonergic mechanism. Fitoterapia 2018; 128: 148-61. doi: 10.1016/j.fitote.2018.05.016 PMID: 29775777
  247. Anca T, Philippe V, Ilioara O, Mircea T. Composition of essential oils of Viola tricolor and V. arvensis from Romania. Chem Nat Compd 2009; 45(1): 91-2. doi: 10.1007/s10600-009-9244-y
  248. Feyzabadi Z, Jafari F, Kamali SH, et al. Efficacy of Viola odorata in treatment of chronic insomnia. Iran Red Crescent Med J 2014; 16(12): e17511. doi: 10.5812/ircmj.17511 PMID: 25763239
  249. Park S, Yoo KO, Marcussen T, et al. Cyclotide evolution: Insights from the analyses of their precursor sequences, structures and distribution in violets (viola). Front Plant Sci 2017; 8: 2058. doi: 10.3389/fpls.2017.02058 PMID: 29326730
  250. Lindholm P, Göransson U, Johansson S, et al. Cyclotides: A novel type of cytotoxic agents. Mol Cancer Ther 2002; 1(6): 365-9. PMID: 12477048
  251. Svangård E, Burman R, Gunasekera S, Lövborg H, Gullbo J, Göransson U. Mechanism of action of cytotoxic cyclotides: Cycloviolacin O2 disrupts lipid membranes. J Nat Prod 2007; 70(4): 643-7. doi: 10.1021/np070007v PMID: 17378610
  252. Parsley NC, Kirkpatrick CL, Crittenden CM, et al. PepSAVI-MS reveals anticancer and antifungal cycloviolacins in Viola odorata. Phytochemistry 2018; 152: 61-70. doi: 10.1016/j.phytochem.2018.04.014 PMID: 29734037
  253. Pränting M, Lööv C, Burman R, Göransson U, Andersson DI. The cyclotide cycloviolacin O2 from Viola odorata has potent bactericidal activity against Gram-negative bacteria. J Antimicrob Chemother 2010; 65(9): 1964-71. doi: 10.1093/jac/dkq220 PMID: 20558471
  254. Kumar K, Sharma YP, Manhas RK, Bhatia H. Ethnomedicinal plants of Shankaracharya Hill, Srinagar, J&K, India. J Ethnopharmacol 2015; 170: 255-74. doi: 10.1016/j.jep.2015.05.021 PMID: 26008867
  255. Feyzabadi Z, Ghorbani F, Vazani Y, Zarshenas MM. A critical review on phytochemistry, pharmacology of Viola odorata L. and related multipotential products in traditional Persian medicine. Phytother Res 2017; 31(11): 1669-75. doi: 10.1002/ptr.5909 PMID: 28948657
  256. Toiu A, Muntean E, Oniga I, Voştinaru O, Tămaş M. Pharmacognostic research on Viola tricolor L. (Violaceae). Rev Med Chir Soc Med Nat Iasi 2009; 113(1): 264-7. PMID: 21491816
  257. Vishal A, Parveen K, Pooja S, Nagappan K. Diuretic, laxative and toxicity studies of Viola odorata aerial parts. Pharmacol Online 2008; p. 1.
  258. Kannappan N, Diwan A, Saini P, Singh S, Antil V, Kumar P. Evaluation of the analgesic activity of Viola odorata aerial parts in rats. J Natur Pharmaceut 2011; 2(1): 24. doi: 10.4103/2229-5119.78493
  259. Witkowska-Banaszczak E, Bylka W, Matławska I, Goślińska O, Muszyński Z. Antimicrobial activity of Viola tricolor herb. Fitoterapia 2005; 76(5): 458-61. doi: 10.1016/j.fitote.2005.03.005 PMID: 15893888
  260. Gautam SS, Navneet , Kumar S. The antibacterial and phytochemical aspects of Viola odorata Linn. extracts against respiratory tract pathogens. Proc Natl Acad Sci, India, Sect B Biol Sci 2012; 82(4): 567-72. doi: 10.1007/s40011-012-0064-7
  261. Harati E, Bahrami M, Razavi A, et al. Effects of Viola tricolor flower hydroethanolic extract on lung inflammation in a mouse model of chronic asthma. Iran J Allergy Asthma Immunol 2018; 17(5): 409-17. doi: 10.18502/ijaai.v17i5.299 PMID: 30518183
  262. Siddiqi HS, Mehmood MH, Rehman NU, Gilani AH. Studies on the antihypertensive and antidyslipidemic activities of Viola odorata leaves extract. Lipids Health Dis 2012; 11(1): 6. doi: 10.1186/1476-511X-11-6 PMID: 22233644
  263. Alipanah H, Bigdeli MR, Esmaeili MA. Inhibitory effect of Viola odorata extract on tumor growth and metastasis in 4T1 breast cancer model. Iran J Pharm Res 2018; 17(1): 276-91. PMID: 29755559
  264. Qasemzadeh MJ, Sharifi H, Hamedanian M, et al. The effect of Viola odorata flower syrup on the cough of children with asthma. J Evid Based Complementary Altern Med 2015; 20(4): 287-91. doi: 10.1177/2156587215584862 PMID: 25954025
  265. Hellinger R, Koehbach J, Fedchuk H, et al. Immunosuppressive activity of an aqueous Viola tricolor herbal extract. J Ethnopharmacol 2014; 151(1): 299-306. doi: 10.1016/j.jep.2013.10.044 PMID: 24216163
  266. Mousavi SH, Naghizade B, Pourgonabadi S, Ghorbani A. Protective effect of Viola tricolor and Viola odorata extracts on serum/glucose deprivation-induced neurotoxicity: Role of reactive oxygen species. Avicenna J Phytomed 2016; 6(4): 434-41. PMID: 27516984
  267. Qadir MI, Ali M, Ali M, Saleem M, Hanif M. Hepatoprotective activity of aqueous methanolic extract of Viola odorata against paracetamol-induced liver injury in mice. Bangladesh J Pharmacol 2014; 9(2): 198-202. doi: 10.3329/bjp.v9i2.18049
  268. Boonthai P, Noikotr K, Saemram N, et al. Formulations for effective detoxification derived from three medicinal plants: Thunbergia laurifolia, Clerodendrum disparifolium and Rotheca serrata. Curr Pharm Biotechnol 2022; 23(1): 140-7. doi: 10.2174/1389201022666210208145605 PMID: 33557734
  269. Gherbon A, Frandes M, Timar R, Nicula M. Beneficial effects of Aloe ferox on lipid profile, blood pressure, and glycemic control in obese persons. Medicine 2021; 100(50): e28336. doi: 10.1097/MD.0000000000028336 PMID: 34918714
  270. Koo HJ, Lee KR, Kim HS, Lee BM. Detoxification effects of aloe polysaccharide and propolis on the urinary excretion of metabolites in smokers. Food Chem Toxicol 2019; 130: 99-108. doi: 10.1016/j.fct.2019.05.029 PMID: 31112706
  271. Wieczorek PP, Hudz N, Yezerska O, et al. Chemical variability and pharmacological potential of propolis as a source for the development of new pharmaceutical products. Molecules 2022; 27(5): 1600. doi: 10.3390/molecules27051600 PMID: 35268700
  272. Kim IS, Hwang CW, Yang WS, Kim CH. Multiple antioxidative and bioactive molecules of oats (Avena sativa L.) in human health. Antioxidants 2021; 10(9): 1454. doi: 10.3390/antiox10091454 PMID: 34573086
  273. Gupta S, Mishra KP, Gupta R, Singh SB. Andrographolide – A prospective remedy for chikungunya fever and viral arthritis. Int Immunopharmacol 2021; 99: 108045. doi: 10.1016/j.intimp.2021.108045 PMID: 34435582
  274. Walker KF, Chappell LC, Hague WM, Middleton P, Thornton JG. Pharmacological interventions for treating intrahepatic cholestasis of pregnancy. Cochrane Database Syst Rev 2020; 7(7): CD000493. PMID: 32716060
  275. Obert J, Pearlman M, Obert L, Chapin S. Popular weight loss strategies: A review of four weight loss techniques. Curr Gastroenterol Rep 2017; 19(12): 61. doi: 10.1007/s11894-017-0603-8 PMID: 29124370
  276. Nestle M. Broccoli sprouts as inducers of carcinogen-detoxifying enzyme systems: Clinical, dietary, and policy implications. Proc Natl Acad Sci USA 1997; 94(21): 11149-51. doi: 10.1073/pnas.94.21.11149 PMID: 9326574
  277. Gasmi A, Gasmi Benahmed A, Shanaida M, et al. Anticancer activity of broccoli, its organosulfur and polyphenolic compounds. Crit Rev Food Sci Nutr 2023; 2023: 1-19. doi: 10.1080/10408398.2023.2195493 PMID: 37129118
  278. Soares A, de Sá-Nakanishi A, Bracht A, et al. Hepatoprotective effects of mushrooms. Molecules 2013; 18(7): 7609-30. doi: 10.3390/molecules18077609 PMID: 23884116
  279. Chiu HF, Fu HY, Lu YY, et al. Triterpenoids and polysaccharide peptides-enriched Ganoderma lucidum: A randomized, double-blind placebo-controlled crossover study of its antioxidation and hepatoprotective efficacy in healthy volunteers. Pharm Biol 2017; 55(1): 1041-6. doi: 10.1080/13880209.2017.1288750 PMID: 28183232
  280. Xu GB, Xiao YH, Zhang QY, Zhou M, Liao SG. Hepatoprotective natural triterpenoids. Eur J Med Chem 2018; 145: 691-716. doi: 10.1016/j.ejmech.2018.01.011 PMID: 29353722
  281. Limaye A, Yu RC, Chou CC, Liu JR, Cheng KC. Protective and detoxifying effects conferred by dietary selenium and curcumin against AFB1-mediated toxicity in livestock: A review. Toxins 2018; 10(1): 25. doi: 10.3390/toxins10010025 PMID: 29301315
  282. Ateş MB, Ortatatli M. The effects of Nigella sativa seeds and thymoquinone on aflatoxin phase-2 detoxification through glutathione and glutathione-S-transferase alpha-3, and the relationship between aflatoxin B1-DNA adducts in broilers. Toxicon 2021; 193: 86-92. doi: 10.1016/j.toxicon.2021.01.020 PMID: 33581172
  283. Debersac P, Heydel J-M, Amiot MJ, et al. Induction of cytochrome P450 and/or detoxication enzymes by various extracts of rosemary: Description of specific patterns. Food Chem Toxicol 2001; 39(9): 907-18.
  284. Bai QY, Tao SM, Tian JH, Cao CR. Progress of research on effect and mechanism of Scutellariae radix on preventing liver diseases. Zhongguo Zhongyao Zazhi 2020; 45(12): 2808-16. PMID: 32627454
  285. Mboumba Bouassa RS, Sebastiani G, Di Marzo V, Jenabian MA, Costiniuk CT. Cannabinoids and chronic liver diseases. Int J Mol Sci 2022; 23(16): 9423. doi: 10.3390/ijms23169423 PMID: 36012687
  286. Zhao W, Bian Y, Wang Q, et al. Blueberry-derived exosomes-like nanoparticles ameliorate nonalcoholic fatty liver disease by attenuating mitochondrial oxidative stress. Acta Pharmacol Sin 2022; 43(3): 645-58. doi: 10.1038/s41401-021-00681-w PMID: 33990765
  287. M Soliman S, Mosallam S, Mamdouh MA, Hussein MA, M Abd El-Halim S. Design and optimization of cranberry extract loaded bile salt augmented liposomes for targeting of MCP-1/STAT3/VEGF signaling pathway in DMN-intoxicated liver in rats. Drug Deliv 2022; 29(1): 427-39. doi: 10.1080/10717544.2022.2032875 PMID: 35098843
  288. Tzankova V, Aluani D, Kondeva-Burdina M, et al. Hepatoprotective and antioxidant activity of quercetin loaded chitosan/alginate particles in vitro and in vivo in a model of paracetamol-induced toxicity. Biomed Pharmacother 2017; 92: 569-79. doi: 10.1016/j.biopha.2017.05.008 PMID: 28577496
  289. Shukla Y, Kalra N. Cancer chemoprevention with garlic and its constituents. Cancer Lett 2007; 247(2): 167-81. doi: 10.1016/j.canlet.2006.05.009 PMID: 16793203
  290. Zhuang X, Deng ZB, Mu J, et al. Ginger-derived nanoparticles protect against alcohol-induced liver damage. J Extracell Vesicles 2015; 4(1): 28713. doi: 10.3402/jev.v4.28713 PMID: 26610593
  291. Lee HS, Li L, Kim HK, et al. The protective effects of Curcuma longa Linn. extract on carbon tetrachloride-induced hepatotoxicity in rats via upregulation of Nrf2. J Microbiol Biotechnol 2010; 20(9): 1331-8. doi: 10.4014/jmb.1002.03010 PMID: 20890099
  292. Quispe C, Cruz-Martins N, Manca ML, et al. Nano-derived therapeutic formulations with curcumin in inflammation-related diseases. Oxid Med Cell Longev 2021; 2021: 1-15. doi: 10.1155/2021/3149223 PMID: 34584616
  293. Zhou W, Liu Q, Zang X, et al. Combination use of tolfenamic acid with curcumin improves anti-inflammatory activity and reduces toxicity in mice. J Food Biochem 2020; 44(6): e13240. doi: 10.1111/jfbc.13240 PMID: 32281661
  294. Predes FS, Ruiz ALTG, Carvalho JE, Foglio MA, Dolder H. Antioxidative and in vitro antiproliferative activity of Arctium lappa root extracts. BMC Complement Altern Med 2011; 11(1): 25. doi: 10.1186/1472-6882-11-25 PMID: 21429215
  295. Küçükgergin C, Aydın AF, Özdemirler-Erata G, Mehmetçik G, Koçak-Toker N, Uysal M. Effect of artichoke leaf extract on hepatic and cardiac oxidative stress in rats fed on high cholesterol diet. Biol Trace Elem Res 2010; 135(1-3): 264-74. doi: 10.1007/s12011-009-8484-9 PMID: 19652921
  296. Küskü-Kiraz Z, Mehmetçik G, Doǧru-Abbasoǧlu S, Uysal M. Artichoke leaf extract reduces oxidative stress and lipoprotein dyshomeostasis in rats fed on high cholesterol diet. Phytother Res 2010; 24(4): 565-70. doi: 10.1002/ptr.2985 PMID: 19777605
  297. Harish R, Chauhan JB. Antioxidant, antimicrobial and cytoprotective action of ethanolic extract of Glycyrrhiza glabra root against ccl4 induced damage on Saccharomyces cerevisiae. J Pharmacogn Phytochem 2019; 8(3): 247-53.
  298. Akaberi M, Sahebkar A, Azizi N, Emami SA. Everlasting flowers: Phytochemistry and pharmacology of the genus Helichrysum. Ind Crops Prod 2019; 138: 111471. doi: 10.1016/j.indcrop.2019.111471
  299. Shakya P, Marslin G, Siram K, Beerhues L, Franklin G. Elicitation as a tool to improve the profiles of high-value secondary metabolites and pharmacological properties of Hypericum perforatum. J Pharm Pharmacol 2018; 71(1): 70-82. doi: 10.1111/jphp.12743 PMID: 28523644
  300. Diukendjieva A, Alov P, Tsakovska I, et al. In vitro and in silico studies of the membrane permeability of natural flavonoids from Silybum marianum (L.) Gaertn. and their derivatives. Phytomedicine 2019; 53: 79-85. doi: 10.1016/j.phymed.2018.09.001 PMID: 30668415

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers