A Glance on Nanovaccine: A Potential Approach for Disease Prevention


Дәйексөз келтіру

Толық мәтін

Аннотация

There are several vaccines available for preventing various bacterial and viral infections, but still, there are many challenges that require the development of noninvasive, more efficient, and active vaccines. The advancement in biotechnological tools has provided safer antigens, such as nucleic acids, proteins etc., but due to their lower immunogenic property, adjuvants of stronger immune response are required. Nanovaccines are effective vaccines when compared with conventional vaccines as they can induce both Humoral and cell-mediated immune responses and also provide longer immunogenic memory. The nanocarriers used in vaccines act as adjuvant. They provide site-specific delivery of antigens and can be used in conjugation with immunostimulatory molecules for enhancing adjuvant therapy. The nanovaccines avoid degrading cell pathways and provide effective absorption into blood vessels. The higher potential of nanovaccines to treat various diseases, such as Acquired Immuno Deficiency Syndrome, Cancer, Tuberculosis, Malaria and many others, along with their immunological mechanisms and different types, have been discussed in the review.

Авторлар туралы

Akash Garg

Department of Pharmaceutics,, Rajiv Academy for Pharmacy

Email: info@benthamscience.net

Rutvi Agrawal

Department of Pharmaceutics, Rajiv Academy for Pharmacy, Mathura

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Himansu Chopra

Department of Pharmaceutics,, Rajiv Academy for Pharmacy

Email: info@benthamscience.net

Talever Singh

Department of Pharmaceutics, Rajiv Academy for Pharmacy,

Email: info@benthamscience.net

Ramkumar Chaudhary

Department of Pharmaceutics, Rajiv Academy for Pharmacy

Email: info@benthamscience.net

Abhishek Tankara

Department of Pharmaceutics,, Rajiv Academy for Pharmacy,

Email: info@benthamscience.net

Әдебиет тізімі

  1. Sekhon, B.; Sekhon, B.; Saluja, V. Nanovaccines-An overview. Inter. J. Pharma. Frontier Res., 2011, 1, 101-109.
  2. Griffin, J. A strategic approach to vaccine development: Animal models, monitoring vaccine efficacy, formulation and delivery. Adv. Drug Deliv. Rev., 2002, 54(6), 851-861. doi: 10.1016/S0169-409X(02)00072-8 PMID: 12363434
  3. Riedel, S. Edward Jenner and the history of smallpox and vaccination. Proc. Bayl. Univ. Med. Cent., 2005, 18(1), 21-25. doi: 10.1080/08998280.2005.11928028 PMID: 16200144
  4. Kaufmann, S.H.E.; Juliana McElrath, M.; Lewis, D.J.M.; Del Giudice, G. Challenges and responses in human vaccine development. Curr. Opin. Immunol., 2014, 28, 18-26. doi: 10.1016/j.coi.2014.01.009 PMID: 24561742
  5. Barouch, D.H. Challenges in the development of an HIV-1 vaccine. Nature, 2008, 455(7213), 613-619. doi: 10.1038/nature07352 PMID: 18833271
  6. Feinberg, M.B.; Moore, J.P. AIDS vaccine models: Challenging challenge viruses. Nat. Med., 2002, 8(3), 207-210. doi: 10.1038/nm0302-207 PMID: 11875482
  7. Nabel, G.J. Challenges and opportunities for development of an AIDS vaccine. Nature, 2001, 410(6831), 1002-1007. doi: 10.1038/35073500 PMID: 11309631
  8. Brennan, M.J. The tuberculosis vaccine challenge. Tuberculosis, 2005, 85(1-2), 7-12. doi: 10.1016/j.tube.2004.09.001 PMID: 15687021
  9. Raviglione, M.; Sulis, G. Tuberculosis 2015: Burden, challenges and strategy for control and elimination. Infect. Dis. Rep., 2016, 8(2), 6570. doi: 10.4081/idr.2016.6570 PMID: 27403269
  10. Siegrist, C.A. The challenges of vaccine responses in early life: Selected examples. J. Comp. Pathol., 2007, 137(1), S4-S9. doi: 10.1016/j.jcpa.2007.04.004 PMID: 17559867
  11. Wilson-Welder, J.H.; Torres, M.P.; Kipper, M.J.; Mallapragada, S.K.; Wannemuehler, M.J.; Narasimhan, B. Vaccine adjuvants: Current challenges and future approaches. J. Pharm. Sci., 2009, 98(4), 1278-1316. doi: 10.1002/jps.21523 PMID: 18704954
  12. Gheibi Hayat, S.M.; Darroudi, M. Nanovaccine: A novel approach in immunization. J. Cell. Physiol., 2019, 234(8), 12530-12536. doi: 10.1002/jcp.28120 PMID: 30633361
  13. Singh, A.; Misra, R.; Mohanty, C.; Sahoo, S.K. Applications of nanotechnology in vaccine delivery. Int. J. Green Nanotechnol. Biomed., 2010, 2(1), B25-B45.
  14. Cordeiro, A.S.; Alonso, M.J.; de la Fuente, M. Nanoengineering of vaccines using natural polysaccharides. Biotechnol. Adv., 2015, 33(6), 1279-1293. doi: 10.1016/j.biotechadv.2015.05.010 PMID: 26049133
  15. Bielinska, A.U.; Chepurnov, A.A.; Landers, J.J.; Janczak, K.W.; Chepurnova, T.S.; Luker, G.D.; Baker, J.R. Jr A novel, killed-virus nasal vaccinia virus vaccine. Clin. Vaccine Immunol., 2008, 15(2), 348-358. doi: 10.1128/CVI.00440-07 PMID: 18057181
  16. Skwarczynski, M.; Toth, I. Peptide-based subunit nanovaccines. Curr. Drug Deliv., 2011, 8(3), 282-289. doi: 10.2174/156720111795256192 PMID: 21291373
  17. Akagi, T.; Akashi, M. Development of polymeric nanoparticles-based vaccine. Jpn. J. Clin. Med., 2006, 64(2), 279-285.
  18. Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release, 2010, 148(2), 135-146. doi: 10.1016/j.jconrel.2010.08.027 PMID: 20797419
  19. Jain, K.K. Nanoparticles as targeting ligands. Trends Biotechnol., 2006, 24(4), 143-145. doi: 10.1016/j.tibtech.2006.02.004 PMID: 16488033
  20. Singh, R.; Lillard, J.W. Jr Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol., 2009, 86(3), 215-223. doi: 10.1016/j.yexmp.2008.12.004 PMID: 19186176
  21. Wang, M.; Thanou, M. Targeting nanoparticles to cancer. Pharmacol. Res., 2010, 62(2), 90-99. doi: 10.1016/j.phrs.2010.03.005 PMID: 20380880
  22. Mahmoudi, M.; Sant, S.; Wang, B.; Laurent, S.; Sen, T. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev., 2011, 63(1-2), 24-46. doi: 10.1016/j.addr.2010.05.006 PMID: 20685224
  23. Mou, X.; Ali, Z.; Li, S.; He, N. Applications of magnetic nanoparticles in targeted drug delivery system. J. Nanosci. Nanotechnol., 2015, 15(1), 54-62. doi: 10.1166/jnn.2015.9585 PMID: 26328305
  24. Mohammed, M.R.; Sher Bahadar, K.; Aslam, J.; Mohd, F.; Abdullah, M.A. Iron Oxide Nanoparticles. In: Nanomaterials; IntechOpen: Rijeka, 2011.
  25. Bao, G.; Mitragotri, S.; Tong, S. Multifunctional nanoparticles for drug delivery and molecular imaging. Annu. Rev. Biomed. Eng., 2013, 15(1), 253-282. doi: 10.1146/annurev-bioeng-071812-152409 PMID: 23642243
  26. Shahbazi, M-A.; Santos, H.A. Revolutionary impact of nanovaccines on immunotherapy. New Horiz. Transl. Med., 2015, 2(2), 44-50.
  27. Stammers, T.S.; Erden, Y.J.; Hunt, G. The promise and challenge of nanovaccines and the question of global equity; J Nanotechnology Perceptions, 2013, pp. 16-27. doi: 10.4024/N02ST13A.ntp.09.01
  28. Smith, D.M.; Simon, J.K.; Baker, J.R., Jr Applications of nanotechnology for immunology. Nat. Rev. Immunol., 2013, 13(8), 592-605. doi: 10.1038/nri3488 PMID: 23883969
  29. Zaman, M.; Good, M.F.; Toth, I. Nanovaccines and their mode of action. Methods, 2013, 60(3), 226-231. doi: 10.1016/j.ymeth.2013.04.014 PMID: 23623821
  30. Luo, M.; Samandi, L.Z.; Wang, Z.; Chen, Z.J.; Gao, J. Synthetic nanovaccines for immunotherapy. J. Control. Release, 2017, 263, 200-210. doi: 10.1016/j.jconrel.2017.03.033 PMID: 28336379
  31. Paulis, L.E.; Mandal, S.; Kreutz, M.; Figdor, C.G. Dendritic cell-based nanovaccines for cancer immunotherapy. Curr. Opin. Immunol., 2013, 25(3), 389-395. doi: 10.1016/j.coi.2013.03.001 PMID: 23571027
  32. Köping-Höggård, M.; Sánchez, A.; Alonso, M.J. Nanoparticles as carriers for nasal vaccine delivery. Expert Rev. Vaccines, 2005, 4(2), 185-196. doi: 10.1586/14760584.4.2.185 PMID: 15889992
  33. Zaheer, T.; Pal, K.; Zaheer, I. Topical review on nano-vaccinology: Biochemical promises and key challenges. Process Biochem., 2021, 100, 237-244. doi: 10.1016/j.procbio.2020.09.028 PMID: 33013180
  34. Bhardwaj, P.; Bhatia, E.; Sharma, S.; Ahamad, N.; Banerjee, R. Advancements in prophylactic and therapeutic nanovaccines. Acta Biomater., 2020, 108, 1-21. doi: 10.1016/j.actbio.2020.03.020 PMID: 32268235
  35. Sulczewski, F.B.; Liszbinski, R.B.; Romão, P.R.T.; Rodrigues Junior, L.C. Nanoparticle vaccines against viral infections. Arch. Virol., 2018, 163(9), 2313-2325. doi: 10.1007/s00705-018-3856-0 PMID: 29728911
  36. Thomas, C.; Rawat, A.; Hope-Weeks, L.; Ahsan, F. Aerosolized PLA and PLGA nanoparticles enhance humoral, mucosal and cytokine responses to hepatitis B vaccine. Mol. Pharm., 2011, 8(2), 405-415. doi: 10.1021/mp100255c PMID: 21189035
  37. Diwan, M.; Tafaghodi, M.; Samuel, J. Enhancement of immune responses by co-delivery of a CpG oligodeoxynucleotide and tetanus toxoid in biodegradable nanospheres. J. Control. Release, 2002, 85(1-3), 247-262. doi: 10.1016/S0168-3659(02)00275-4 PMID: 12480329
  38. Borges, O.; Cordeiro-da-Silva, A.; Tavares, J.; Santarém, N.; de Sousa, A.; Borchard, G.; Junginger, H.E. Immune response by nasal delivery of hepatitis B surface antigen and codelivery of a CpG ODN in alginate coated chitosan nanoparticles. Eur. J. Pharm. Biopharm., 2008, 69(2), 405-416. doi: 10.1016/j.ejpb.2008.01.019 PMID: 18364251
  39. Li, P.; Luo, Z.; Liu, P.; Gao, N.; Zhang, Y.; Pan, H.; Liu, L.; Wang, C.; Cai, L.; Ma, Y. Bioreducible alginate-poly(ethylenimine) nanogels as an antigen-delivery system robustly enhance vaccine-elicited humoral and cellular immune responses. J. Control. Release, 2013, 168(3), 271-279. doi: 10.1016/j.jconrel.2013.03.025 PMID: 23562637
  40. Pippa, N.; Gazouli, M.; Pispas, S. Recent advances and future perspectives in polymer-based nanovaccines. Vaccines, 2021, 9(6), 558. doi: 10.3390/vaccines9060558 PMID: 34073648
  41. López-Sagaseta, J.; Malito, E.; Rappuoli, R.; Bottomley, M.J. Self-assembling protein nanoparticles in the design of vaccines. Comput. Struct. Biotechnol. J., 2016, 14, 58-68. doi: 10.1016/j.csbj.2015.11.001 PMID: 26862374
  42. Qi, M.; Zhang, X.E.; Sun, X.; Zhang, X.; Yao, Y.; Liu, S.; Chen, Z.; Li, W.; Zhang, Z.; Chen, J.; Cui, Z. Intranasal nanovaccine confers homo- and hetero-subtypic influenza protection. Small, 2018, 14(13), e1703207.
  43. Asadi, K.; Gholami, A. Virosome-based nanovaccines; a promising bioinspiration and biomimetic approach for preventing viral diseases: A review. Int. J. Biol. Macromol., 2021, 182, 648-658. doi: 10.1016/j.ijbiomac.2021.04.005 PMID: 33862071
  44. Chasteen, N.D.; Harrison, P.M. Mineralization in ferritin: An efficient means of iron storage. J. Struct. Biol., 1999, 126(3), 182-194. doi: 10.1006/jsbi.1999.4118 PMID: 10441528
  45. Kanekiyo, M.; Wei, C.J.; Yassine, H.M.; McTamney, P.M.; Boyington, J.C.; Whittle, J.R.R.; Rao, S.S.; Kong, W.P.; Wang, L.; Nabel, G.J. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature, 2013, 499(7456), 102-106. doi: 10.1038/nature12202 PMID: 23698367
  46. Wahome, N.; Pfeiffer, T.; Ambiel, I.; Yang, Y.; Keppler, O.T.; Bosch, V.; Burkhard, P. Conformation-specific display of 4E10 and 2F5 epitopes on self-assembling protein nanoparticles as a potential HIV vaccine. Chem. Biol. Drug Des., 2012, 80(3), 349-357. doi: 10.1111/j.1747-0285.2012.01423.x PMID: 22650354
  47. Vijayan, V.; Mohapatra, A.; Uthaman, S.; Park, I.K. Recent advances in nanovaccines using biomimetic immunomodulatory materials. Pharmaceutics, 2019, 11(10), 534. doi: 10.3390/pharmaceutics11100534 PMID: 31615112
  48. Gomes, A.; Mohsen, M.; Bachmann, M. Harnessing nanoparticles for immunomodulation and vaccines. Vaccines, 2017, 5(1), 6. doi: 10.3390/vaccines5010006 PMID: 28216554
  49. Garg, H.; Mehmetoglu-Gurbuz, T.; Joshi, A. Virus Like Particles (VLP) as multivalent vaccine candidate against Chikungunya, Japanese Encephalitis, Yellow Fever and Zika Virus. Sci. Rep., 2020, 10(1), 4017. doi: 10.1038/s41598-020-61103-1 PMID: 32132648
  50. Urakami, A.; Sakurai, A.; Ishikawa, M.; Yap, M.L.; Flores-Garcia, Y.; Haseda, Y.; Aoshi, T.; Zavala, F.P.; Rossmann, M.G.; Kuno, S.; Ueno, R.; Akahata, W. Development of a novel virus-like particle vaccine platform that mimics the immature form of alphavirus. Clin. Vaccine Immunol., 2017, 24(7), e00090-e17. doi: 10.1128/CVI.00090-17 PMID: 28515133
  51. Roldão, A.; Mellado, M.C.M.; Castilho, L.R.; Carrondo, M.J.T.; Alves, P.M. Virus-like particles in vaccine development. Expert Rev. Vaccines, 2010, 9(10), 1149-1176. doi: 10.1586/erv.10.115 PMID: 20923267
  52. Zhao, L.; Zhu, Z.; Ma, L.; Li, Y. O/W nanoemulsion as an adjuvant for an inactivated H3N2 influenza vaccine: Based on particle properties and mode of carrying. Int. J. Nanomedicine, 2020, 15, 2071-2083. doi: 10.2147/IJN.S232677 PMID: 32273703
  53. Duinkerken, S.; Horrevorts, S.K.; Kalay, H.; Ambrosini, M.; Rutte, L.; de Gruijl, T.D.; Garcia-Vallejo, J.J.; van Kooyk, Y. Glyco-Dendrimers as intradermal anti-tumor vaccine targeting multiple skin DC subsets. Theranostics, 2019, 9(20), 5797-5809. doi: 10.7150/thno.35059 PMID: 31534520
  54. Olczak, P.; Roden, R.B.S. Progress in L2-Based prophylactic vaccine development for protection against diverse human papillomavirus genotypes and associated diseases. Vaccines, 2020, 8(4), 568. doi: 10.3390/vaccines8040568 PMID: 33019516
  55. Tao, W.; Ziemer, K.S.; Gill, H.S. Gold nanoparticle–M2e conjugate coformulated with CpG induces protective immunity against influenza A virus. Nanomedicine, 2014, 9(2), 237-251. doi: 10.2217/nnm.13.58 PMID: 23829488
  56. Mousavi, S.M.; Zarei, M.; Hashemi, S.A.; Ramakrishna, S.; Chiang, W.H.; Lai, C.W.; Gholami, A. Gold nanostars-diagnosis, bioimaging and biomedical applications. Drug Metab. Rev., 2020, 52(2), 299-318. doi: 10.1080/03602532.2020.1734021 PMID: 32150480
  57. Gholami, A.; Mousavi, S.M.; Hashemi, S.A.; Ghasemi, Y.; Chiang, W.H.; Parvin, N. Current trends in chemical modifications of magnetic nanoparticles for targeted drug delivery in cancer chemotherapy. Drug Metab. Rev., 2020, 52(1), 205-224. PMID: 32083952
  58. Climent, N.; García, I.; Marradi, M.; Chiodo, F.; Miralles, L.; Maleno, M.J.; Gatell, J.M.; García, F.; Penadés, S.; Plana, M. Loading dendritic cells with gold nanoparticles (GNPs) bearing HIV-peptides and mannosides enhance HIV-specific T cell responses. Nanomedicine, 2018, 14(2), 339-351. doi: 10.1016/j.nano.2017.11.009 PMID: 29157976
  59. Lindblad, E.B. Aluminium adjuvants—in retrospect and prospect. Vaccine, 2004, 22(27-28), 3658-3668. doi: 10.1016/j.vaccine.2004.03.032 PMID: 15315845
  60. Frey, A.; Mantis, N.; Kozlowski, P.A.; Quayle, A.J.; Bajardi, A.; Perdomo, J.J.; Robey, F.A.; Neutra, M.R. Immunization of mice with peptomers covalently coupled to aluminum oxide nanoparticles. Vaccine, 1999, 17(23-24), 3007-3019. doi: 10.1016/S0264-410X(99)00163-2 PMID: 10462236
  61. Frey, A.; Neutra, M.R.; Robey, F.A. Peptomer aluminum oxide nanoparticle conjugates as systemic and mucosal vaccine candidates: Synthesis and characterization of a conjugate derived from the C4 domain of HIV-1MN gp120. Bioconjug. Chem., 1997, 8(3), 424-433. doi: 10.1021/bc970036p PMID: 9177850
  62. Chiu, D.; Zhou, W.; Kitayaporn, S.; Schwartz, D.T.; Murali-Krishna, K.; Kavanagh, T.J.; Baneyx, F. Biomineralization and size control of stable calcium phosphate core-protein shell nanoparticles: potential for vaccine applications. Bioconjug. Chem., 2012, 23(3), 610-617. doi: 10.1021/bc200654v PMID: 22263898
  63. Powell, T.J.; Palath, N.; DeRome, M.E.; Tang, J.; Jacobs, A.; Boyd, J.G. Synthetic nanoparticle vaccines produced by layer-by-layer assembly of artificial biofilms induce potent protective T-cell and antibody responses in vivo. Vaccine, 2011, 29(3), 558-569. doi: 10.1016/j.vaccine.2010.10.001 PMID: 20951665
  64. Skwarczynski, M.; Toth, I. Recent advances in peptide-based subunit nanovaccines. Nanomedicine, 2014, 9(17), 2657-2669. doi: 10.2217/nnm.14.187 PMID: 25529569
  65. Wang, N.; Chen, M.; Wang, T. Liposomes used as a vaccine adjuvant-delivery system: From basics to clinical immunization. J. Control. Release, 2019, 303, 130-150. doi: 10.1016/j.jconrel.2019.04.025 PMID: 31022431
  66. He, H.; Yuan, D.; Wu, Y.; Cao, Y. Pharmacokinetics and pharmacodynamics modeling and simulation systems to support the development and regulation of liposomal drugs. Pharmaceutics, 2019, 11(3), 110. doi: 10.3390/pharmaceutics11030110 PMID: 30866479
  67. Sharma, S.; Mukkur, T.K.S.; Benson, H.A.E.; Chen, Y. Pharmaceutical aspects of intranasal delivery of vaccines using particulate systems. J. Pharm. Sci., 2009, 98(3), 812-843. doi: 10.1002/jps.21493 PMID: 18661544
  68. Khatri, K.; Goyal, A.K.; Gupta, P.N.; Mishra, N.; Mehta, A.; Vyas, S.P. Surface modified liposomes for nasal delivery of DNA vaccine. Vaccine, 2008, 26(18), 2225-2233. doi: 10.1016/j.vaccine.2008.02.058 PMID: 18396362
  69. Li, S.; Rizzo, M.A.; Bhattacharya, S.; Huang, L. Characterization of cationic lipid-protamine–DNA (LPD) complexes for intravenous gene delivery. Gene Ther., 1998, 5(7), 930-937. doi: 10.1038/sj.gt.3300683 PMID: 9813664
  70. Li, S.; Huang, L. In vivo gene transfer via intravenous administration of cationic lipid–protamine–DNA (LPD) complexes. Gene Ther., 1997, 4(9), 891-900. doi: 10.1038/sj.gt.3300482 PMID: 9349425
  71. Moon, J.J.; Suh, H.; Polhemus, M.E.; Ockenhouse, C.F.; Yadava, A.; Irvine, D.J. Antigen-displaying lipid-enveloped PLGA nanoparticles as delivery agents for a Plasmodium vivax malaria vaccine. PLoS One, 2012, 7(2), e31472. doi: 10.1371/journal.pone.0031472 PMID: 22328935
  72. Facciolà, A.; Visalli, G.; Laganà, P.; La Fauci, V.; Squeri, R.; Pellicanò, G.F.; Nunnari, G.; Trovato, M.; Di Pietro, A. The new era of vaccines: The "nanovaccinology". Eur. Rev. Med. Pharmacol. Sci., 2019, 23(16), 7163-7182. PMID: 31486519
  73. Pulendran, B.; Ahmed, R. Immunological mechanisms of vaccination. Nat. Immunol., 2011, 12(6), 509-517. doi: 10.1038/ni.2039 PMID: 21739679
  74. Blok, B.A.; Arts, R.J.W.; van Crevel, R.; Benn, C.S.; Netea, M.G. Trained innate immunity as underlying mechanism for the long-term, nonspecific effects of vaccines. J. Leukoc. Biol., 2015, 98(3), 347-356. doi: 10.1189/jlb.5RI0315-096R PMID: 26150551
  75. Demento, S.L.; Siefert, A.L.; Bandyopadhyay, A.; Sharp, F.A.; Fahmy, T.M. Pathogen-associated molecular patterns on biomaterials: A paradigm for engineering new vaccines. Trends Biotechnol., 2011, 29(6), 294-306. doi: 10.1016/j.tibtech.2011.02.004 PMID: 21459467
  76. Toy, R.; Roy, K. Engineering nanoparticles to overcome barriers to immunotherapy. Bioeng. Transl. Med., 2016, 1(1), 47-62. doi: 10.1002/btm2.10005 PMID: 29313006
  77. Kalluru, R.; Fenaroli, F.; Westmoreland, D.; Ulanova, L.; Maleki, A.; Roos, N.; Paulsen Madsen, M.; Koster, G.; Egge-Jacobsen, W.; Wilson, S.; Roberg-Larsen, H.; Khuller, G.K.; Singh, A.; Nyström, B.; Griffiths, G. Poly(lactide-co-glycolide)-rifampicin nanoparticles efficiently clear Mycobacterium bovis BCG infection in macrophages and remain membrane-bound in phago-lysosomes. J. Cell Sci., 2013, 126(Pt 14), 3043-3054. PMID: 23687375
  78. Vasievich, E.A.; Chen, W.; Huang, L. Enantiospecific adjuvant activity of cationic lipid DOTAP in cancer vaccine. Cancer Immunol. Immunother., 2011, 60(5), 629-638. doi: 10.1007/s00262-011-0970-1 PMID: 21267720
  79. Gross, B.P.; Wongrakpanich, A.; Francis, M.B.; Salem, A.K.; Norian, L.A. A therapeutic microparticle-based tumor lysate vaccine reduces spontaneous metastases in murine breast cancer. AAPS J., 2014, 16(6), 1194-1203. doi: 10.1208/s12248-014-9662-z PMID: 25224145
  80. Restifo, N.P.; Dudley, M.E.; Rosenberg, S.A. Adoptive immunotherapy for cancer: Harnessing the T cell response. Nat. Rev. Immunol., 2012, 12(4), 269-281. doi: 10.1038/nri3191 PMID: 22437939
  81. Hussein, W.M.; Liu, T.Y.; Jia, Z.; McMillan, N.A.J.; Monteiro, M.J.; Toth, I.; Skwarczynski, M. Multiantigenic peptide–polymer conjugates as therapeutic vaccines against cervical cancer. Bioorg. Med. Chem., 2016, 24(18), 4372-4380. doi: 10.1016/j.bmc.2016.07.036 PMID: 27475535
  82. Walsh, K.P.; Mills, K.H.G. Dendritic cells and other innate determinants of T helper cell polarisation. Trends Immunol., 2013, 34(11), 521-530. doi: 10.1016/j.it.2013.07.006 PMID: 23973621
  83. Tran, E.; Turcotte, S.; Gros, A.; Robbins, P.F.; Lu, Y.C.; Dudley, M.E.; Wunderlich, J.R.; Somerville, R.P.; Hogan, K.; Hinrichs, C.S.; Parkhurst, M.R.; Yang, J.C.; Rosenberg, S.A. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science, 2014, 344(6184), 641-645. doi: 10.1126/science.1251102 PMID: 24812403
  84. Berkowska, M.A.; Driessen, G.J.A.; Bikos, V.; Grosserichter-Wagener, C.; Stamatopoulos, K.; Cerutti, A.; He, B.; Biermann, K.; Lange, J.F.; van der Burg, M.; van Dongen, J.J.M.; van Zelm, M.C. Human memory B cells originate from three distinct germinal center-dependent and -independent maturation pathways. Blood, 2011, 118(8), 2150-2158. doi: 10.1182/blood-2011-04-345579 PMID: 21690558
  85. Huang, H.; Benoist, C.; Mathis, D. Rituximab specifically depletes short-lived autoreactive plasma cells in a mouse model of inflammatory arthritis. Proc. Natl. Acad. Sci., 2010, 107(10), 4658-4663. doi: 10.1073/pnas.1001074107 PMID: 20176942
  86. Levine, T.P.; Chain, B.M.; Brodsky, F. The cell biology of antigen processing. Crit. Rev. Biochem. Mol. Biol., 1991, 26(5-6), 439-473. doi: 10.3109/10409239109086790 PMID: 1722142
  87. Seidman, J.C.; Richard, S.A.; Viboud, C.; Miller, M.A. Quantitative review of antibody response to inactivated seasonal influenza vaccines. Influenza Other Respir. Viruses, 2012, 6(1), 52-62. doi: 10.1111/j.1750-2659.2011.00268.x PMID: 21668661
  88. McHugh, K.J.; Guarecuco, R.; Langer, R.; Jaklenec, A. Single-injection vaccines: Progress, challenges, and opportunities. J. Control. Release, 2015, 219, 596-609. doi: 10.1016/j.jconrel.2015.07.029 PMID: 26254198
  89. de Titta, A.; Ballester, M.; Julier, Z.; Nembrini, C.; Jeanbart, L.; van der Vlies, A.J.; Swartz, M.A.; Hubbell, J.A. Nanoparticle conjugation of CpG enhances adjuvancy for cellular immunity and memory recall at low dose. Proc. Natl. Acad. Sci., 2013, 110(49), 19902-19907. doi: 10.1073/pnas.1313152110 PMID: 24248387
  90. Demento, S.L.; Cui, W.; Criscione, J.M.; Stern, E.; Tulipan, J.; Kaech, S.M.; Fahmy, T.M. Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype. Biomaterials, 2012, 33(19), 4957-4964. doi: 10.1016/j.biomaterials.2012.03.041 PMID: 22484047
  91. Rice-Ficht, A.C.; Arenas-Gamboa, A.M.; Kahl-McDonagh, M.M.; Ficht, T.A. Polymeric particles in vaccine delivery. Curr. Opin. Microbiol., 2010, 13(1), 106-112. doi: 10.1016/j.mib.2009.12.001 PMID: 20079678
  92. Reddy, S.T.; van der Vlies, A.J.; Simeoni, E.; Angeli, V.; Randolph, G.J.; O’Neil, C.P.; Lee, L.K.; Swartz, M.A.; Hubbell, J.A. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat. Biotechnol., 2007, 25(10), 1159-1164. doi: 10.1038/nbt1332 PMID: 17873867
  93. Kanchan, V.; Katare, Y.K.; Panda, A.K. Memory antibody response from antigen loaded polymer particles and the effect of antigen release kinetics. Biomaterials, 2009, 30(27), 4763-4776. doi: 10.1016/j.biomaterials.2009.05.075 PMID: 19540583
  94. Fan, Y.; Moon, J. Nanoparticle drug delivery systems designed to improve cancer vaccines and immunotherapy. Vaccines, 2015, 3(3), 662-685. doi: 10.3390/vaccines3030662 PMID: 26350600
  95. Park, Y.M.; Lee, S.J.; Kim, Y.S.; Lee, M.H.; Cha, G.S.; Jung, I.D.; Kang, T.H.; Han, H.D. Nanoparticle-based vaccine delivery for cancer immunotherapy. Immune Netw., 2013, 13(5), 177-183. doi: 10.4110/in.2013.13.5.177 PMID: 24198742
  96. Yadav, H.K.S.; Dibi, M.; Mohammad, A.; Srouji, A.E. Nanovaccines formulation and applications-a review. J. Drug Deliv. Sci. Technol., 2018, 44, 380-387. doi: 10.1016/j.jddst.2018.01.015
  97. Shi, G.N.; Zhang, C.N.; Xu, R.; Niu, J.F.; Song, H.J.; Zhang, X.Y.; Wang, W.W.; Wang, Y.M.; Li, C.; Wei, X.Q.; Kong, D.L. Enhanced antitumor immunity by targeting dendritic cells with tumor cell lysate-loaded chitosan nanoparticles vaccine. Biomaterials, 2017, 113, 191-202. doi: 10.1016/j.biomaterials.2016.10.047 PMID: 27816821
  98. Zeng, Q.; Li, H.; Jiang, H.; Yu, J.; Wang, Y.; Ke, H.; Gong, T.; Zhang, Z.; Sun, X. Tailoring polymeric hybrid micelles with lymph node targeting ability to improve the potency of cancer vaccines. Biomaterials, 2017, 122, 105-113. doi: 10.1016/j.biomaterials.2017.01.010 PMID: 28110170
  99. D’Amico, C.; Fontana, F.; Cheng, R.; Santos, H.A. Development of vaccine formulations: Past, present, and future. Drug Deliv. Transl. Res., 2021, 11(2), 353-372. doi: 10.1007/s13346-021-00924-7 PMID: 33598818
  100. Tang, Y.; Fan, W.; Chen, G.; Zhang, M.; Tang, X.; Wang, H.; Zhao, P.; Xu, Q.; Wu, Z.; Lin, X.; Huang, Y. Recombinant cancer nanovaccine for targeting tumor-associated macrophage and remodeling tumor microenvironment. Nano Today, 2021, 40, 101244. doi: 10.1016/j.nantod.2021.101244
  101. Jiang, M.; Zhao, L.; Cui, X.; Wu, X.; Zhang, Y.; Guan, X.; Ma, J.; Zhang, W. Cooperating minimalist nanovaccine with PD-1 blockade for effective and feasible cancer immunotherapy. J. Adv. Res., 2022, 35, 49-60. doi: 10.1016/j.jare.2021.08.011 PMID: 35003793
  102. Wang, D.; Gu, W.; Chen, W.; Zhou, J.; Yu, L.; Kook Kim, B.; Zhang, X.; Seung Kim, J. Advanced nanovaccines based on engineering nanomaterials for accurately enhanced cancer immunotherapy. Coord. Chem. Rev., 2022, 472, 214788. doi: 10.1016/j.ccr.2022.214788
  103. Xu, F.; Yuan, Y.; Wang, Y.; Yin, Q. Emerging peptide-based nanovaccines: From design synthesis to defense against cancer and infection. Biomed. Pharmacother., 2023, 158, 114117. doi: 10.1016/j.biopha.2022.114117 PMID: 36528914
  104. Yi, Y.; Yu, M.; Li, W.; Zhu, D.; Mei, L.; Ou, M. Vaccine-like nanomedicine for cancer immunotherapy. J. Control. Release, 2023, 355, 760-778. doi: 10.1016/j.jconrel.2023.02.015 PMID: 36822241
  105. Vasil’ev Iu, M. Avian influenza vaccines. Vopr. Virusol., 2008, 53(6), 4-15. PMID: 19172900
  106. Neuhaus, V.; Chichester, J.A.; Ebensen, T.; Schwarz, K.; Hartman, C.E.; Shoji, Y.; Guzmán, C.A.; Yusibov, V.; Sewald, K.; Braun, A. A new adjuvanted nanoparticle-based H1N1 influenza vaccine induced antigen-specific local mucosal and systemic immune responses after administration into the lung. Vaccine, 2014, 32(26), 3216-3222. doi: 10.1016/j.vaccine.2014.04.011 PMID: 24731807
  107. Dhakal, S.; Goodman, J.; Bondra, K.; Lakshmanappa, Y.S.; Hiremath, J.; Shyu, D.L.; Ouyang, K.; Kang, K.; Krakowka, S.; Wannemuehler, M.J.; Won Lee, C.; Narasimhan, B.; Renukaradhya, G.J. Polyanhydride nanovaccine against swine influenza virus in pigs. Vaccine, 2017, 35(8), 1124-1131. doi: 10.1016/j.vaccine.2017.01.019 PMID: 28117173
  108. Ross, K.A.; Loyd, H.; Wu, W.; Huntimer, L.; Ahmed, S.; Sambol, A.; Broderick, S.; Flickinger, Z.; Rajan, K.; Bronich, T.; Mallapragada, S.; Wannemuehler, M.J.; Carpenter, S.; Narasimhan, B. Hemagglutinin-based polyanhydride nanovaccines against H5N1 influenza elicit protective virus neutralizing titers and cell-mediated immunity. Int. J. Nanomedicine, 2014, 10, 229-243. PMID: 25565816
  109. Kumar, R.; Ray, P.C.; Datta, D.; Bansal, G.P.; Angov, E.; Kumar, N. Nanovaccines for malaria using Plasmodium falciparum antigen Pfs25 attached gold nanoparticles. Vaccine, 2015, 33(39), 5064-5071. doi: 10.1016/j.vaccine.2015.08.025 PMID: 26299750
  110. Ansari, M.A.; Zubair, S.; Mahmood, A.; Gupta, P.; Khan, A.A.; Gupta, U.D.; Arora, A.; Owais, M. RD antigen based nanovaccine imparts long term protection by inducing memory response against experimental murine tuberculosis. PLoS One, 2011, 6(8), e22889. doi: 10.1371/journal.pone.0022889 PMID: 21853054
  111. Dhanasooraj, D.; Kumar, R.A.; Mundayoor, S. Vaccine delivery system for tuberculosis based on nano-sized hepatitis B virus core protein particles. Int. J. Nanomedicine, 2013, 8, 835-843. PMID: 23486691
  112. Chesson, C.B.; Huante, M.; Nusbaum, R.J.; Walker, A.G.; Clover, T.M.; Chinnaswamy, J.; Endsley, J.J.; Rudra, J.S. Nanoscale peptide self-assemblies boost BCG-primed cellular immunity against mycobacterium tuberculosis. Sci. Rep., 2018, 8(1), 12519. doi: 10.1038/s41598-018-31089-y PMID: 30131591
  113. Aikins, M.E.; Bazzill, J.; Moon, J.J. Vaccine nanoparticles for protection against HIV infection. Nanomedicine, 2017, 12(6), 673-682. doi: 10.2217/nnm-2016-0381 PMID: 28244816
  114. Rostami, H.; Ebtekar, M.; Ardestani, M.S.; Yazdi, M.H.; Mahdavi, M. Co-utilization of a TLR5 agonist and nano-formulation of HIV-1 vaccine candidate leads to increased vaccine immunogenicity and decreased immunogenic dose: A preliminary study. Immunol. Lett., 2017, 187, 19-26. doi: 10.1016/j.imlet.2017.05.002 PMID: 28479111
  115. a) Malik, T.; Chauhan, G.; Rath, G.; Kesarkar, R. N.; Chowdhary, A. S.; Goyal, A. K. Efaverinz and nano-gold-loaded mannosylated niosomes: A host cell-targeted topical HIV-1 prophylaxis via thermogel system. Artificial cells, nanomedicine, and biotechnology, 2018, 46(1), 79-90. doi: 10.1080/21691401.2017.1414054; b) Gazzi A, Fusco L, Orecchioni M, Ferrari S, Franzoni G, Yan JS, et al. Graphene, other carbon nanomaterials and the immune system: toward nanoimmunity-by-design. J. Phys. Mater., 2020, 3(3), 034009.
  116. Al-Hatamleh, M.A.I.; Hatmal, M.M.; Alshaer, W.; Rahman, E.N.S.E.A.; Mohd-Zahid, M.H.; Alhaj-Qasem, D.M.; Yean, C.Y.; Alias, I.Z.; Jaafar, J.; Ferji, K.; Six, J.L. Uskoković V.; Yabu, H.; Mohamud, R. COVID-19 infection and nanomedicine applications for development of vaccines and therapeutics: An overview and future perspectives based on polymersomes. Eur. J. Pharmacol., 2021, 896, 173930. doi: 10.1016/j.ejphar.2021.173930 PMID: 33545157
  117. Singh Sekh, B. Nanoprobes and their applications in veterinary medicine and animal health. Res. J. Nanoscience and Nano., 2012, 2(1), 1-16. doi: 10.3923/rjnn.2012.1.16 PMID: 22523944
  118. In application of nano-vaccines in veterinary medicine, 2007.
  119. Brock, K.V. The persistence of bovine viral diarrhea virus. Biologicals. Journal of the International Association of Biological Standardization, 2003, 31(2), 133-135.
  120. Bruschke, C.; Moormann, R.J.; van Oirschot, J.T.; van Rijn, P.A. A subunit vaccine based on glycoprotein E2 of bovine virus diarrhea virus induces fetal protection in sheep against homologous challenge. Vaccine, 1997, 15(17-18), 1940-1945. doi: 10.1016/S0264-410X(97)00125-4 PMID: 9413105
  121. Thomas, C.; Young, N.J.; Heaney, J.; Collins, M.E.; Brownlie, J. Evaluation of efficacy of mammalian and baculovirus expressed E2 subunit vaccine candidates to bovine viral diarrhoea virus. Vaccine, 2009, 27(17), 2387-2393. doi: 10.1016/j.vaccine.2009.02.010 PMID: 19428855
  122. Pecora, A.; Aguirreburualde, M.S.P.; Aguirreburualde, A.; Leunda, M.R.; Odeon, A.; Chiavenna, S.; Bochoeyer, D.; Spitteler, M.; Filippi, J.L.; Dus Santos, M.J.; Levy, S.M.; Wigdorovitz, A. Safety and efficacy of an E2 glycoprotein subunit vaccine produced in mammalian cells to prevent experimental infection with bovine viral diarrhoea virus in cattle. Vet. Res. Commun., 2012, 36(3), 157-164. doi: 10.1007/s11259-012-9526-x PMID: 22639081
  123. Snider, M.; Garg, R.; Brownlie, R.; van den Hurk, J.V.; Hurk, S.D.L. The bovine viral diarrhea virus E2 protein formulated with a novel adjuvant induces strong, balanced immune responses and provides protection from viral challenge in cattle. Vaccine, 2014, 32(50), 6758-6764. doi: 10.1016/j.vaccine.2014.10.010 PMID: 25454860
  124. Mahony, D.; Cavallaro, A.S.; Mody, K.T.; Xiong, L.; Mahony, T.J.; Qiao, S.Z.; Mitter, N. In vivo delivery of bovine viral diahorrea virus, E2 protein using hollow mesoporous silica nanoparticles. Nanoscale, 2014, 6(12), 6617-6626. doi: 10.1039/C4NR01202J PMID: 24811899
  125. Mody, K.T.; Mahony, D.; Cavallaro, A.S.; Zhang, J.; Zhang, B.; Mahony, T.J.; Yu, C.; Mitter, N. Silica Vesicle Nanovaccine Formulations Stimulate Long-Term Immune responses to the bovine viral diarrhoea virus E2 protein. PLoS One, 2015, 10(12), e0143507. doi: 10.1371/journal.pone.0143507 PMID: 26630001
  126. Mahony, D.; Mody, K.T.; Cavallaro, A.S.; Hu, Q.; Mahony, T.J.; Qiao, S.; Mitter, N. Immunisation of sheep with bovine viral diarrhoea virus, e2 protein using a freeze-dried hollow silica mesoporous nanoparticle formulation. PLoS One, 2015, 10(11), e0141870. doi: 10.1371/journal.pone.0141870 PMID: 26535891
  127. Maina, T.W.; Grego, E.A.; Boggiatto, P.M.; Sacco, R.E.; Narasimhan, B.; McGill, J.L. Applications of nanovaccines for disease prevention in cattle. Front. Bioeng. Biotechnol., 2020, 8, 608050. doi: 10.3389/fbioe.2020.608050 PMID: 33363134
  128. Thukral, A.; Ross, K.; Hansen, C.; Phanse, Y.; Narasimhan, B.; Steinberg, H.; Talaat, A.M. A single dose polyanhydride-based nanovaccine against paratuberculosis infection. NPJ Vaccines, 2020, 5(1), 15. doi: 10.1038/s41541-020-0164-y PMID: 32128256
  129. Bernocchi, B. Porous maltodextrin nanoparticles for the intranasal delivery of vaccines Nanoparticules de maltodextrine pour l’administration intranasale des vaccins; , 2016. Available from: https://theses.hal.science/tel-01480950/document
  130. Bernocchi, B.; Carpentier, R.; Betbeder, D. Nasal nanovaccines. Int. J. Pharm., 2017, 530(1-2), 128-138. doi: 10.1016/j.ijpharm.2017.07.012 PMID: 28698066
  131. Hafner, A. Lovrić J.; Lakoš, G.P.; Pepić I. Nanotherapeutics in the EU: An overview on current state and future directions. Int. J. Nanomedicine, 2014, 9, 1005-1023. PMID: 24600222
  132. Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal formulations in clinical use: An updated review. Pharmaceutics, 2017, 9(4), 12. doi: 10.3390/pharmaceutics9020012 PMID: 28346375
  133. Pereira, V.B.; Zurita-Turk, M.; Saraiva, T.D.L.; De Castro, C.P.; Souza, B.M.; Mancha Agresti, P.; Lima, F.A.; Pfeiffer, V.N.; Azevedo, M.S.P.; Rocha, C.S.; Pontes, D.S.; Azevedo, V.; Miyoshi, A. DNA vaccines approach: From concepts to applications. World J. Vaccines, 2014, 4(2), 50-71. doi: 10.4236/wjv.2014.42008
  134. Dewangan, H.K.; Raghuvanshi, A.; Shah, K. Emerging trends and future challenges of nanovaccine delivery via nasal route. Curr. Drug Targets, 2022. PMID: 36475350

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024