A Glance on Nanovaccine: A Potential Approach for Disease Prevention
- Авторлар: Garg A.1, Agrawal R.2, Chopra H.1, Singh T.3, Chaudhary R.4, Tankara A.5
-
Мекемелер:
- Department of Pharmaceutics,, Rajiv Academy for Pharmacy
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, Mathura
- Department of Pharmaceutics, Rajiv Academy for Pharmacy,
- Department of Pharmaceutics, Rajiv Academy for Pharmacy
- Department of Pharmaceutics,, Rajiv Academy for Pharmacy,
- Шығарылым: Том 25, № 11 (2024)
- Беттер: 1406-1418
- Бөлім: Biotechnology
- URL: https://ruspoj.com/1389-2010/article/view/644422
- DOI: https://doi.org/10.2174/0113892010254221231006100659
- ID: 644422
Дәйексөз келтіру
Толық мәтін
Аннотация
There are several vaccines available for preventing various bacterial and viral infections, but still, there are many challenges that require the development of noninvasive, more efficient, and active vaccines. The advancement in biotechnological tools has provided safer antigens, such as nucleic acids, proteins etc., but due to their lower immunogenic property, adjuvants of stronger immune response are required. Nanovaccines are effective vaccines when compared with conventional vaccines as they can induce both Humoral and cell-mediated immune responses and also provide longer immunogenic memory. The nanocarriers used in vaccines act as adjuvant. They provide site-specific delivery of antigens and can be used in conjugation with immunostimulatory molecules for enhancing adjuvant therapy. The nanovaccines avoid degrading cell pathways and provide effective absorption into blood vessels. The higher potential of nanovaccines to treat various diseases, such as Acquired Immuno Deficiency Syndrome, Cancer, Tuberculosis, Malaria and many others, along with their immunological mechanisms and different types, have been discussed in the review.
Негізгі сөздер
Авторлар туралы
Akash Garg
Department of Pharmaceutics,, Rajiv Academy for Pharmacy
Email: info@benthamscience.net
Rutvi Agrawal
Department of Pharmaceutics, Rajiv Academy for Pharmacy, Mathura
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Himansu Chopra
Department of Pharmaceutics,, Rajiv Academy for Pharmacy
Email: info@benthamscience.net
Talever Singh
Department of Pharmaceutics, Rajiv Academy for Pharmacy,
Email: info@benthamscience.net
Ramkumar Chaudhary
Department of Pharmaceutics, Rajiv Academy for Pharmacy
Email: info@benthamscience.net
Abhishek Tankara
Department of Pharmaceutics,, Rajiv Academy for Pharmacy,
Email: info@benthamscience.net
Әдебиет тізімі
- Sekhon, B.; Sekhon, B.; Saluja, V. Nanovaccines-An overview. Inter. J. Pharma. Frontier Res., 2011, 1, 101-109.
- Griffin, J. A strategic approach to vaccine development: Animal models, monitoring vaccine efficacy, formulation and delivery. Adv. Drug Deliv. Rev., 2002, 54(6), 851-861. doi: 10.1016/S0169-409X(02)00072-8 PMID: 12363434
- Riedel, S. Edward Jenner and the history of smallpox and vaccination. Proc. Bayl. Univ. Med. Cent., 2005, 18(1), 21-25. doi: 10.1080/08998280.2005.11928028 PMID: 16200144
- Kaufmann, S.H.E.; Juliana McElrath, M.; Lewis, D.J.M.; Del Giudice, G. Challenges and responses in human vaccine development. Curr. Opin. Immunol., 2014, 28, 18-26. doi: 10.1016/j.coi.2014.01.009 PMID: 24561742
- Barouch, D.H. Challenges in the development of an HIV-1 vaccine. Nature, 2008, 455(7213), 613-619. doi: 10.1038/nature07352 PMID: 18833271
- Feinberg, M.B.; Moore, J.P. AIDS vaccine models: Challenging challenge viruses. Nat. Med., 2002, 8(3), 207-210. doi: 10.1038/nm0302-207 PMID: 11875482
- Nabel, G.J. Challenges and opportunities for development of an AIDS vaccine. Nature, 2001, 410(6831), 1002-1007. doi: 10.1038/35073500 PMID: 11309631
- Brennan, M.J. The tuberculosis vaccine challenge. Tuberculosis, 2005, 85(1-2), 7-12. doi: 10.1016/j.tube.2004.09.001 PMID: 15687021
- Raviglione, M.; Sulis, G. Tuberculosis 2015: Burden, challenges and strategy for control and elimination. Infect. Dis. Rep., 2016, 8(2), 6570. doi: 10.4081/idr.2016.6570 PMID: 27403269
- Siegrist, C.A. The challenges of vaccine responses in early life: Selected examples. J. Comp. Pathol., 2007, 137(1), S4-S9. doi: 10.1016/j.jcpa.2007.04.004 PMID: 17559867
- Wilson-Welder, J.H.; Torres, M.P.; Kipper, M.J.; Mallapragada, S.K.; Wannemuehler, M.J.; Narasimhan, B. Vaccine adjuvants: Current challenges and future approaches. J. Pharm. Sci., 2009, 98(4), 1278-1316. doi: 10.1002/jps.21523 PMID: 18704954
- Gheibi Hayat, S.M.; Darroudi, M. Nanovaccine: A novel approach in immunization. J. Cell. Physiol., 2019, 234(8), 12530-12536. doi: 10.1002/jcp.28120 PMID: 30633361
- Singh, A.; Misra, R.; Mohanty, C.; Sahoo, S.K. Applications of nanotechnology in vaccine delivery. Int. J. Green Nanotechnol. Biomed., 2010, 2(1), B25-B45.
- Cordeiro, A.S.; Alonso, M.J.; de la Fuente, M. Nanoengineering of vaccines using natural polysaccharides. Biotechnol. Adv., 2015, 33(6), 1279-1293. doi: 10.1016/j.biotechadv.2015.05.010 PMID: 26049133
- Bielinska, A.U.; Chepurnov, A.A.; Landers, J.J.; Janczak, K.W.; Chepurnova, T.S.; Luker, G.D.; Baker, J.R. Jr A novel, killed-virus nasal vaccinia virus vaccine. Clin. Vaccine Immunol., 2008, 15(2), 348-358. doi: 10.1128/CVI.00440-07 PMID: 18057181
- Skwarczynski, M.; Toth, I. Peptide-based subunit nanovaccines. Curr. Drug Deliv., 2011, 8(3), 282-289. doi: 10.2174/156720111795256192 PMID: 21291373
- Akagi, T.; Akashi, M. Development of polymeric nanoparticles-based vaccine. Jpn. J. Clin. Med., 2006, 64(2), 279-285.
- Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release, 2010, 148(2), 135-146. doi: 10.1016/j.jconrel.2010.08.027 PMID: 20797419
- Jain, K.K. Nanoparticles as targeting ligands. Trends Biotechnol., 2006, 24(4), 143-145. doi: 10.1016/j.tibtech.2006.02.004 PMID: 16488033
- Singh, R.; Lillard, J.W. Jr Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol., 2009, 86(3), 215-223. doi: 10.1016/j.yexmp.2008.12.004 PMID: 19186176
- Wang, M.; Thanou, M. Targeting nanoparticles to cancer. Pharmacol. Res., 2010, 62(2), 90-99. doi: 10.1016/j.phrs.2010.03.005 PMID: 20380880
- Mahmoudi, M.; Sant, S.; Wang, B.; Laurent, S.; Sen, T. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev., 2011, 63(1-2), 24-46. doi: 10.1016/j.addr.2010.05.006 PMID: 20685224
- Mou, X.; Ali, Z.; Li, S.; He, N. Applications of magnetic nanoparticles in targeted drug delivery system. J. Nanosci. Nanotechnol., 2015, 15(1), 54-62. doi: 10.1166/jnn.2015.9585 PMID: 26328305
- Mohammed, M.R.; Sher Bahadar, K.; Aslam, J.; Mohd, F.; Abdullah, M.A. Iron Oxide Nanoparticles. In: Nanomaterials; IntechOpen: Rijeka, 2011.
- Bao, G.; Mitragotri, S.; Tong, S. Multifunctional nanoparticles for drug delivery and molecular imaging. Annu. Rev. Biomed. Eng., 2013, 15(1), 253-282. doi: 10.1146/annurev-bioeng-071812-152409 PMID: 23642243
- Shahbazi, M-A.; Santos, H.A. Revolutionary impact of nanovaccines on immunotherapy. New Horiz. Transl. Med., 2015, 2(2), 44-50.
- Stammers, T.S.; Erden, Y.J.; Hunt, G. The promise and challenge of nanovaccines and the question of global equity; J Nanotechnology Perceptions, 2013, pp. 16-27. doi: 10.4024/N02ST13A.ntp.09.01
- Smith, D.M.; Simon, J.K.; Baker, J.R., Jr Applications of nanotechnology for immunology. Nat. Rev. Immunol., 2013, 13(8), 592-605. doi: 10.1038/nri3488 PMID: 23883969
- Zaman, M.; Good, M.F.; Toth, I. Nanovaccines and their mode of action. Methods, 2013, 60(3), 226-231. doi: 10.1016/j.ymeth.2013.04.014 PMID: 23623821
- Luo, M.; Samandi, L.Z.; Wang, Z.; Chen, Z.J.; Gao, J. Synthetic nanovaccines for immunotherapy. J. Control. Release, 2017, 263, 200-210. doi: 10.1016/j.jconrel.2017.03.033 PMID: 28336379
- Paulis, L.E.; Mandal, S.; Kreutz, M.; Figdor, C.G. Dendritic cell-based nanovaccines for cancer immunotherapy. Curr. Opin. Immunol., 2013, 25(3), 389-395. doi: 10.1016/j.coi.2013.03.001 PMID: 23571027
- Köping-Höggård, M.; Sánchez, A.; Alonso, M.J. Nanoparticles as carriers for nasal vaccine delivery. Expert Rev. Vaccines, 2005, 4(2), 185-196. doi: 10.1586/14760584.4.2.185 PMID: 15889992
- Zaheer, T.; Pal, K.; Zaheer, I. Topical review on nano-vaccinology: Biochemical promises and key challenges. Process Biochem., 2021, 100, 237-244. doi: 10.1016/j.procbio.2020.09.028 PMID: 33013180
- Bhardwaj, P.; Bhatia, E.; Sharma, S.; Ahamad, N.; Banerjee, R. Advancements in prophylactic and therapeutic nanovaccines. Acta Biomater., 2020, 108, 1-21. doi: 10.1016/j.actbio.2020.03.020 PMID: 32268235
- Sulczewski, F.B.; Liszbinski, R.B.; Romão, P.R.T.; Rodrigues Junior, L.C. Nanoparticle vaccines against viral infections. Arch. Virol., 2018, 163(9), 2313-2325. doi: 10.1007/s00705-018-3856-0 PMID: 29728911
- Thomas, C.; Rawat, A.; Hope-Weeks, L.; Ahsan, F. Aerosolized PLA and PLGA nanoparticles enhance humoral, mucosal and cytokine responses to hepatitis B vaccine. Mol. Pharm., 2011, 8(2), 405-415. doi: 10.1021/mp100255c PMID: 21189035
- Diwan, M.; Tafaghodi, M.; Samuel, J. Enhancement of immune responses by co-delivery of a CpG oligodeoxynucleotide and tetanus toxoid in biodegradable nanospheres. J. Control. Release, 2002, 85(1-3), 247-262. doi: 10.1016/S0168-3659(02)00275-4 PMID: 12480329
- Borges, O.; Cordeiro-da-Silva, A.; Tavares, J.; Santarém, N.; de Sousa, A.; Borchard, G.; Junginger, H.E. Immune response by nasal delivery of hepatitis B surface antigen and codelivery of a CpG ODN in alginate coated chitosan nanoparticles. Eur. J. Pharm. Biopharm., 2008, 69(2), 405-416. doi: 10.1016/j.ejpb.2008.01.019 PMID: 18364251
- Li, P.; Luo, Z.; Liu, P.; Gao, N.; Zhang, Y.; Pan, H.; Liu, L.; Wang, C.; Cai, L.; Ma, Y. Bioreducible alginate-poly(ethylenimine) nanogels as an antigen-delivery system robustly enhance vaccine-elicited humoral and cellular immune responses. J. Control. Release, 2013, 168(3), 271-279. doi: 10.1016/j.jconrel.2013.03.025 PMID: 23562637
- Pippa, N.; Gazouli, M.; Pispas, S. Recent advances and future perspectives in polymer-based nanovaccines. Vaccines, 2021, 9(6), 558. doi: 10.3390/vaccines9060558 PMID: 34073648
- López-Sagaseta, J.; Malito, E.; Rappuoli, R.; Bottomley, M.J. Self-assembling protein nanoparticles in the design of vaccines. Comput. Struct. Biotechnol. J., 2016, 14, 58-68. doi: 10.1016/j.csbj.2015.11.001 PMID: 26862374
- Qi, M.; Zhang, X.E.; Sun, X.; Zhang, X.; Yao, Y.; Liu, S.; Chen, Z.; Li, W.; Zhang, Z.; Chen, J.; Cui, Z. Intranasal nanovaccine confers homo- and hetero-subtypic influenza protection. Small, 2018, 14(13), e1703207.
- Asadi, K.; Gholami, A. Virosome-based nanovaccines; a promising bioinspiration and biomimetic approach for preventing viral diseases: A review. Int. J. Biol. Macromol., 2021, 182, 648-658. doi: 10.1016/j.ijbiomac.2021.04.005 PMID: 33862071
- Chasteen, N.D.; Harrison, P.M. Mineralization in ferritin: An efficient means of iron storage. J. Struct. Biol., 1999, 126(3), 182-194. doi: 10.1006/jsbi.1999.4118 PMID: 10441528
- Kanekiyo, M.; Wei, C.J.; Yassine, H.M.; McTamney, P.M.; Boyington, J.C.; Whittle, J.R.R.; Rao, S.S.; Kong, W.P.; Wang, L.; Nabel, G.J. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature, 2013, 499(7456), 102-106. doi: 10.1038/nature12202 PMID: 23698367
- Wahome, N.; Pfeiffer, T.; Ambiel, I.; Yang, Y.; Keppler, O.T.; Bosch, V.; Burkhard, P. Conformation-specific display of 4E10 and 2F5 epitopes on self-assembling protein nanoparticles as a potential HIV vaccine. Chem. Biol. Drug Des., 2012, 80(3), 349-357. doi: 10.1111/j.1747-0285.2012.01423.x PMID: 22650354
- Vijayan, V.; Mohapatra, A.; Uthaman, S.; Park, I.K. Recent advances in nanovaccines using biomimetic immunomodulatory materials. Pharmaceutics, 2019, 11(10), 534. doi: 10.3390/pharmaceutics11100534 PMID: 31615112
- Gomes, A.; Mohsen, M.; Bachmann, M. Harnessing nanoparticles for immunomodulation and vaccines. Vaccines, 2017, 5(1), 6. doi: 10.3390/vaccines5010006 PMID: 28216554
- Garg, H.; Mehmetoglu-Gurbuz, T.; Joshi, A. Virus Like Particles (VLP) as multivalent vaccine candidate against Chikungunya, Japanese Encephalitis, Yellow Fever and Zika Virus. Sci. Rep., 2020, 10(1), 4017. doi: 10.1038/s41598-020-61103-1 PMID: 32132648
- Urakami, A.; Sakurai, A.; Ishikawa, M.; Yap, M.L.; Flores-Garcia, Y.; Haseda, Y.; Aoshi, T.; Zavala, F.P.; Rossmann, M.G.; Kuno, S.; Ueno, R.; Akahata, W. Development of a novel virus-like particle vaccine platform that mimics the immature form of alphavirus. Clin. Vaccine Immunol., 2017, 24(7), e00090-e17. doi: 10.1128/CVI.00090-17 PMID: 28515133
- Roldão, A.; Mellado, M.C.M.; Castilho, L.R.; Carrondo, M.J.T.; Alves, P.M. Virus-like particles in vaccine development. Expert Rev. Vaccines, 2010, 9(10), 1149-1176. doi: 10.1586/erv.10.115 PMID: 20923267
- Zhao, L.; Zhu, Z.; Ma, L.; Li, Y. O/W nanoemulsion as an adjuvant for an inactivated H3N2 influenza vaccine: Based on particle properties and mode of carrying. Int. J. Nanomedicine, 2020, 15, 2071-2083. doi: 10.2147/IJN.S232677 PMID: 32273703
- Duinkerken, S.; Horrevorts, S.K.; Kalay, H.; Ambrosini, M.; Rutte, L.; de Gruijl, T.D.; Garcia-Vallejo, J.J.; van Kooyk, Y. Glyco-Dendrimers as intradermal anti-tumor vaccine targeting multiple skin DC subsets. Theranostics, 2019, 9(20), 5797-5809. doi: 10.7150/thno.35059 PMID: 31534520
- Olczak, P.; Roden, R.B.S. Progress in L2-Based prophylactic vaccine development for protection against diverse human papillomavirus genotypes and associated diseases. Vaccines, 2020, 8(4), 568. doi: 10.3390/vaccines8040568 PMID: 33019516
- Tao, W.; Ziemer, K.S.; Gill, H.S. Gold nanoparticleM2e conjugate coformulated with CpG induces protective immunity against influenza A virus. Nanomedicine, 2014, 9(2), 237-251. doi: 10.2217/nnm.13.58 PMID: 23829488
- Mousavi, S.M.; Zarei, M.; Hashemi, S.A.; Ramakrishna, S.; Chiang, W.H.; Lai, C.W.; Gholami, A. Gold nanostars-diagnosis, bioimaging and biomedical applications. Drug Metab. Rev., 2020, 52(2), 299-318. doi: 10.1080/03602532.2020.1734021 PMID: 32150480
- Gholami, A.; Mousavi, S.M.; Hashemi, S.A.; Ghasemi, Y.; Chiang, W.H.; Parvin, N. Current trends in chemical modifications of magnetic nanoparticles for targeted drug delivery in cancer chemotherapy. Drug Metab. Rev., 2020, 52(1), 205-224. PMID: 32083952
- Climent, N.; García, I.; Marradi, M.; Chiodo, F.; Miralles, L.; Maleno, M.J.; Gatell, J.M.; García, F.; Penadés, S.; Plana, M. Loading dendritic cells with gold nanoparticles (GNPs) bearing HIV-peptides and mannosides enhance HIV-specific T cell responses. Nanomedicine, 2018, 14(2), 339-351. doi: 10.1016/j.nano.2017.11.009 PMID: 29157976
- Lindblad, E.B. Aluminium adjuvantsin retrospect and prospect. Vaccine, 2004, 22(27-28), 3658-3668. doi: 10.1016/j.vaccine.2004.03.032 PMID: 15315845
- Frey, A.; Mantis, N.; Kozlowski, P.A.; Quayle, A.J.; Bajardi, A.; Perdomo, J.J.; Robey, F.A.; Neutra, M.R. Immunization of mice with peptomers covalently coupled to aluminum oxide nanoparticles. Vaccine, 1999, 17(23-24), 3007-3019. doi: 10.1016/S0264-410X(99)00163-2 PMID: 10462236
- Frey, A.; Neutra, M.R.; Robey, F.A. Peptomer aluminum oxide nanoparticle conjugates as systemic and mucosal vaccine candidates: Synthesis and characterization of a conjugate derived from the C4 domain of HIV-1MN gp120. Bioconjug. Chem., 1997, 8(3), 424-433. doi: 10.1021/bc970036p PMID: 9177850
- Chiu, D.; Zhou, W.; Kitayaporn, S.; Schwartz, D.T.; Murali-Krishna, K.; Kavanagh, T.J.; Baneyx, F. Biomineralization and size control of stable calcium phosphate core-protein shell nanoparticles: potential for vaccine applications. Bioconjug. Chem., 2012, 23(3), 610-617. doi: 10.1021/bc200654v PMID: 22263898
- Powell, T.J.; Palath, N.; DeRome, M.E.; Tang, J.; Jacobs, A.; Boyd, J.G. Synthetic nanoparticle vaccines produced by layer-by-layer assembly of artificial biofilms induce potent protective T-cell and antibody responses in vivo. Vaccine, 2011, 29(3), 558-569. doi: 10.1016/j.vaccine.2010.10.001 PMID: 20951665
- Skwarczynski, M.; Toth, I. Recent advances in peptide-based subunit nanovaccines. Nanomedicine, 2014, 9(17), 2657-2669. doi: 10.2217/nnm.14.187 PMID: 25529569
- Wang, N.; Chen, M.; Wang, T. Liposomes used as a vaccine adjuvant-delivery system: From basics to clinical immunization. J. Control. Release, 2019, 303, 130-150. doi: 10.1016/j.jconrel.2019.04.025 PMID: 31022431
- He, H.; Yuan, D.; Wu, Y.; Cao, Y. Pharmacokinetics and pharmacodynamics modeling and simulation systems to support the development and regulation of liposomal drugs. Pharmaceutics, 2019, 11(3), 110. doi: 10.3390/pharmaceutics11030110 PMID: 30866479
- Sharma, S.; Mukkur, T.K.S.; Benson, H.A.E.; Chen, Y. Pharmaceutical aspects of intranasal delivery of vaccines using particulate systems. J. Pharm. Sci., 2009, 98(3), 812-843. doi: 10.1002/jps.21493 PMID: 18661544
- Khatri, K.; Goyal, A.K.; Gupta, P.N.; Mishra, N.; Mehta, A.; Vyas, S.P. Surface modified liposomes for nasal delivery of DNA vaccine. Vaccine, 2008, 26(18), 2225-2233. doi: 10.1016/j.vaccine.2008.02.058 PMID: 18396362
- Li, S.; Rizzo, M.A.; Bhattacharya, S.; Huang, L. Characterization of cationic lipid-protamineDNA (LPD) complexes for intravenous gene delivery. Gene Ther., 1998, 5(7), 930-937. doi: 10.1038/sj.gt.3300683 PMID: 9813664
- Li, S.; Huang, L. In vivo gene transfer via intravenous administration of cationic lipidprotamineDNA (LPD) complexes. Gene Ther., 1997, 4(9), 891-900. doi: 10.1038/sj.gt.3300482 PMID: 9349425
- Moon, J.J.; Suh, H.; Polhemus, M.E.; Ockenhouse, C.F.; Yadava, A.; Irvine, D.J. Antigen-displaying lipid-enveloped PLGA nanoparticles as delivery agents for a Plasmodium vivax malaria vaccine. PLoS One, 2012, 7(2), e31472. doi: 10.1371/journal.pone.0031472 PMID: 22328935
- Facciolà, A.; Visalli, G.; Laganà, P.; La Fauci, V.; Squeri, R.; Pellicanò, G.F.; Nunnari, G.; Trovato, M.; Di Pietro, A. The new era of vaccines: The "nanovaccinology". Eur. Rev. Med. Pharmacol. Sci., 2019, 23(16), 7163-7182. PMID: 31486519
- Pulendran, B.; Ahmed, R. Immunological mechanisms of vaccination. Nat. Immunol., 2011, 12(6), 509-517. doi: 10.1038/ni.2039 PMID: 21739679
- Blok, B.A.; Arts, R.J.W.; van Crevel, R.; Benn, C.S.; Netea, M.G. Trained innate immunity as underlying mechanism for the long-term, nonspecific effects of vaccines. J. Leukoc. Biol., 2015, 98(3), 347-356. doi: 10.1189/jlb.5RI0315-096R PMID: 26150551
- Demento, S.L.; Siefert, A.L.; Bandyopadhyay, A.; Sharp, F.A.; Fahmy, T.M. Pathogen-associated molecular patterns on biomaterials: A paradigm for engineering new vaccines. Trends Biotechnol., 2011, 29(6), 294-306. doi: 10.1016/j.tibtech.2011.02.004 PMID: 21459467
- Toy, R.; Roy, K. Engineering nanoparticles to overcome barriers to immunotherapy. Bioeng. Transl. Med., 2016, 1(1), 47-62. doi: 10.1002/btm2.10005 PMID: 29313006
- Kalluru, R.; Fenaroli, F.; Westmoreland, D.; Ulanova, L.; Maleki, A.; Roos, N.; Paulsen Madsen, M.; Koster, G.; Egge-Jacobsen, W.; Wilson, S.; Roberg-Larsen, H.; Khuller, G.K.; Singh, A.; Nyström, B.; Griffiths, G. Poly(lactide-co-glycolide)-rifampicin nanoparticles efficiently clear Mycobacterium bovis BCG infection in macrophages and remain membrane-bound in phago-lysosomes. J. Cell Sci., 2013, 126(Pt 14), 3043-3054. PMID: 23687375
- Vasievich, E.A.; Chen, W.; Huang, L. Enantiospecific adjuvant activity of cationic lipid DOTAP in cancer vaccine. Cancer Immunol. Immunother., 2011, 60(5), 629-638. doi: 10.1007/s00262-011-0970-1 PMID: 21267720
- Gross, B.P.; Wongrakpanich, A.; Francis, M.B.; Salem, A.K.; Norian, L.A. A therapeutic microparticle-based tumor lysate vaccine reduces spontaneous metastases in murine breast cancer. AAPS J., 2014, 16(6), 1194-1203. doi: 10.1208/s12248-014-9662-z PMID: 25224145
- Restifo, N.P.; Dudley, M.E.; Rosenberg, S.A. Adoptive immunotherapy for cancer: Harnessing the T cell response. Nat. Rev. Immunol., 2012, 12(4), 269-281. doi: 10.1038/nri3191 PMID: 22437939
- Hussein, W.M.; Liu, T.Y.; Jia, Z.; McMillan, N.A.J.; Monteiro, M.J.; Toth, I.; Skwarczynski, M. Multiantigenic peptidepolymer conjugates as therapeutic vaccines against cervical cancer. Bioorg. Med. Chem., 2016, 24(18), 4372-4380. doi: 10.1016/j.bmc.2016.07.036 PMID: 27475535
- Walsh, K.P.; Mills, K.H.G. Dendritic cells and other innate determinants of T helper cell polarisation. Trends Immunol., 2013, 34(11), 521-530. doi: 10.1016/j.it.2013.07.006 PMID: 23973621
- Tran, E.; Turcotte, S.; Gros, A.; Robbins, P.F.; Lu, Y.C.; Dudley, M.E.; Wunderlich, J.R.; Somerville, R.P.; Hogan, K.; Hinrichs, C.S.; Parkhurst, M.R.; Yang, J.C.; Rosenberg, S.A. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science, 2014, 344(6184), 641-645. doi: 10.1126/science.1251102 PMID: 24812403
- Berkowska, M.A.; Driessen, G.J.A.; Bikos, V.; Grosserichter-Wagener, C.; Stamatopoulos, K.; Cerutti, A.; He, B.; Biermann, K.; Lange, J.F.; van der Burg, M.; van Dongen, J.J.M.; van Zelm, M.C. Human memory B cells originate from three distinct germinal center-dependent and -independent maturation pathways. Blood, 2011, 118(8), 2150-2158. doi: 10.1182/blood-2011-04-345579 PMID: 21690558
- Huang, H.; Benoist, C.; Mathis, D. Rituximab specifically depletes short-lived autoreactive plasma cells in a mouse model of inflammatory arthritis. Proc. Natl. Acad. Sci., 2010, 107(10), 4658-4663. doi: 10.1073/pnas.1001074107 PMID: 20176942
- Levine, T.P.; Chain, B.M.; Brodsky, F. The cell biology of antigen processing. Crit. Rev. Biochem. Mol. Biol., 1991, 26(5-6), 439-473. doi: 10.3109/10409239109086790 PMID: 1722142
- Seidman, J.C.; Richard, S.A.; Viboud, C.; Miller, M.A. Quantitative review of antibody response to inactivated seasonal influenza vaccines. Influenza Other Respir. Viruses, 2012, 6(1), 52-62. doi: 10.1111/j.1750-2659.2011.00268.x PMID: 21668661
- McHugh, K.J.; Guarecuco, R.; Langer, R.; Jaklenec, A. Single-injection vaccines: Progress, challenges, and opportunities. J. Control. Release, 2015, 219, 596-609. doi: 10.1016/j.jconrel.2015.07.029 PMID: 26254198
- de Titta, A.; Ballester, M.; Julier, Z.; Nembrini, C.; Jeanbart, L.; van der Vlies, A.J.; Swartz, M.A.; Hubbell, J.A. Nanoparticle conjugation of CpG enhances adjuvancy for cellular immunity and memory recall at low dose. Proc. Natl. Acad. Sci., 2013, 110(49), 19902-19907. doi: 10.1073/pnas.1313152110 PMID: 24248387
- Demento, S.L.; Cui, W.; Criscione, J.M.; Stern, E.; Tulipan, J.; Kaech, S.M.; Fahmy, T.M. Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype. Biomaterials, 2012, 33(19), 4957-4964. doi: 10.1016/j.biomaterials.2012.03.041 PMID: 22484047
- Rice-Ficht, A.C.; Arenas-Gamboa, A.M.; Kahl-McDonagh, M.M.; Ficht, T.A. Polymeric particles in vaccine delivery. Curr. Opin. Microbiol., 2010, 13(1), 106-112. doi: 10.1016/j.mib.2009.12.001 PMID: 20079678
- Reddy, S.T.; van der Vlies, A.J.; Simeoni, E.; Angeli, V.; Randolph, G.J.; ONeil, C.P.; Lee, L.K.; Swartz, M.A.; Hubbell, J.A. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat. Biotechnol., 2007, 25(10), 1159-1164. doi: 10.1038/nbt1332 PMID: 17873867
- Kanchan, V.; Katare, Y.K.; Panda, A.K. Memory antibody response from antigen loaded polymer particles and the effect of antigen release kinetics. Biomaterials, 2009, 30(27), 4763-4776. doi: 10.1016/j.biomaterials.2009.05.075 PMID: 19540583
- Fan, Y.; Moon, J. Nanoparticle drug delivery systems designed to improve cancer vaccines and immunotherapy. Vaccines, 2015, 3(3), 662-685. doi: 10.3390/vaccines3030662 PMID: 26350600
- Park, Y.M.; Lee, S.J.; Kim, Y.S.; Lee, M.H.; Cha, G.S.; Jung, I.D.; Kang, T.H.; Han, H.D. Nanoparticle-based vaccine delivery for cancer immunotherapy. Immune Netw., 2013, 13(5), 177-183. doi: 10.4110/in.2013.13.5.177 PMID: 24198742
- Yadav, H.K.S.; Dibi, M.; Mohammad, A.; Srouji, A.E. Nanovaccines formulation and applications-a review. J. Drug Deliv. Sci. Technol., 2018, 44, 380-387. doi: 10.1016/j.jddst.2018.01.015
- Shi, G.N.; Zhang, C.N.; Xu, R.; Niu, J.F.; Song, H.J.; Zhang, X.Y.; Wang, W.W.; Wang, Y.M.; Li, C.; Wei, X.Q.; Kong, D.L. Enhanced antitumor immunity by targeting dendritic cells with tumor cell lysate-loaded chitosan nanoparticles vaccine. Biomaterials, 2017, 113, 191-202. doi: 10.1016/j.biomaterials.2016.10.047 PMID: 27816821
- Zeng, Q.; Li, H.; Jiang, H.; Yu, J.; Wang, Y.; Ke, H.; Gong, T.; Zhang, Z.; Sun, X. Tailoring polymeric hybrid micelles with lymph node targeting ability to improve the potency of cancer vaccines. Biomaterials, 2017, 122, 105-113. doi: 10.1016/j.biomaterials.2017.01.010 PMID: 28110170
- DAmico, C.; Fontana, F.; Cheng, R.; Santos, H.A. Development of vaccine formulations: Past, present, and future. Drug Deliv. Transl. Res., 2021, 11(2), 353-372. doi: 10.1007/s13346-021-00924-7 PMID: 33598818
- Tang, Y.; Fan, W.; Chen, G.; Zhang, M.; Tang, X.; Wang, H.; Zhao, P.; Xu, Q.; Wu, Z.; Lin, X.; Huang, Y. Recombinant cancer nanovaccine for targeting tumor-associated macrophage and remodeling tumor microenvironment. Nano Today, 2021, 40, 101244. doi: 10.1016/j.nantod.2021.101244
- Jiang, M.; Zhao, L.; Cui, X.; Wu, X.; Zhang, Y.; Guan, X.; Ma, J.; Zhang, W. Cooperating minimalist nanovaccine with PD-1 blockade for effective and feasible cancer immunotherapy. J. Adv. Res., 2022, 35, 49-60. doi: 10.1016/j.jare.2021.08.011 PMID: 35003793
- Wang, D.; Gu, W.; Chen, W.; Zhou, J.; Yu, L.; Kook Kim, B.; Zhang, X.; Seung Kim, J. Advanced nanovaccines based on engineering nanomaterials for accurately enhanced cancer immunotherapy. Coord. Chem. Rev., 2022, 472, 214788. doi: 10.1016/j.ccr.2022.214788
- Xu, F.; Yuan, Y.; Wang, Y.; Yin, Q. Emerging peptide-based nanovaccines: From design synthesis to defense against cancer and infection. Biomed. Pharmacother., 2023, 158, 114117. doi: 10.1016/j.biopha.2022.114117 PMID: 36528914
- Yi, Y.; Yu, M.; Li, W.; Zhu, D.; Mei, L.; Ou, M. Vaccine-like nanomedicine for cancer immunotherapy. J. Control. Release, 2023, 355, 760-778. doi: 10.1016/j.jconrel.2023.02.015 PMID: 36822241
- Vasilev Iu, M. Avian influenza vaccines. Vopr. Virusol., 2008, 53(6), 4-15. PMID: 19172900
- Neuhaus, V.; Chichester, J.A.; Ebensen, T.; Schwarz, K.; Hartman, C.E.; Shoji, Y.; Guzmán, C.A.; Yusibov, V.; Sewald, K.; Braun, A. A new adjuvanted nanoparticle-based H1N1 influenza vaccine induced antigen-specific local mucosal and systemic immune responses after administration into the lung. Vaccine, 2014, 32(26), 3216-3222. doi: 10.1016/j.vaccine.2014.04.011 PMID: 24731807
- Dhakal, S.; Goodman, J.; Bondra, K.; Lakshmanappa, Y.S.; Hiremath, J.; Shyu, D.L.; Ouyang, K.; Kang, K.; Krakowka, S.; Wannemuehler, M.J.; Won Lee, C.; Narasimhan, B.; Renukaradhya, G.J. Polyanhydride nanovaccine against swine influenza virus in pigs. Vaccine, 2017, 35(8), 1124-1131. doi: 10.1016/j.vaccine.2017.01.019 PMID: 28117173
- Ross, K.A.; Loyd, H.; Wu, W.; Huntimer, L.; Ahmed, S.; Sambol, A.; Broderick, S.; Flickinger, Z.; Rajan, K.; Bronich, T.; Mallapragada, S.; Wannemuehler, M.J.; Carpenter, S.; Narasimhan, B. Hemagglutinin-based polyanhydride nanovaccines against H5N1 influenza elicit protective virus neutralizing titers and cell-mediated immunity. Int. J. Nanomedicine, 2014, 10, 229-243. PMID: 25565816
- Kumar, R.; Ray, P.C.; Datta, D.; Bansal, G.P.; Angov, E.; Kumar, N. Nanovaccines for malaria using Plasmodium falciparum antigen Pfs25 attached gold nanoparticles. Vaccine, 2015, 33(39), 5064-5071. doi: 10.1016/j.vaccine.2015.08.025 PMID: 26299750
- Ansari, M.A.; Zubair, S.; Mahmood, A.; Gupta, P.; Khan, A.A.; Gupta, U.D.; Arora, A.; Owais, M. RD antigen based nanovaccine imparts long term protection by inducing memory response against experimental murine tuberculosis. PLoS One, 2011, 6(8), e22889. doi: 10.1371/journal.pone.0022889 PMID: 21853054
- Dhanasooraj, D.; Kumar, R.A.; Mundayoor, S. Vaccine delivery system for tuberculosis based on nano-sized hepatitis B virus core protein particles. Int. J. Nanomedicine, 2013, 8, 835-843. PMID: 23486691
- Chesson, C.B.; Huante, M.; Nusbaum, R.J.; Walker, A.G.; Clover, T.M.; Chinnaswamy, J.; Endsley, J.J.; Rudra, J.S. Nanoscale peptide self-assemblies boost BCG-primed cellular immunity against mycobacterium tuberculosis. Sci. Rep., 2018, 8(1), 12519. doi: 10.1038/s41598-018-31089-y PMID: 30131591
- Aikins, M.E.; Bazzill, J.; Moon, J.J. Vaccine nanoparticles for protection against HIV infection. Nanomedicine, 2017, 12(6), 673-682. doi: 10.2217/nnm-2016-0381 PMID: 28244816
- Rostami, H.; Ebtekar, M.; Ardestani, M.S.; Yazdi, M.H.; Mahdavi, M. Co-utilization of a TLR5 agonist and nano-formulation of HIV-1 vaccine candidate leads to increased vaccine immunogenicity and decreased immunogenic dose: A preliminary study. Immunol. Lett., 2017, 187, 19-26. doi: 10.1016/j.imlet.2017.05.002 PMID: 28479111
- a) Malik, T.; Chauhan, G.; Rath, G.; Kesarkar, R. N.; Chowdhary, A. S.; Goyal, A. K. Efaverinz and nano-gold-loaded mannosylated niosomes: A host cell-targeted topical HIV-1 prophylaxis via thermogel system. Artificial cells, nanomedicine, and biotechnology, 2018, 46(1), 79-90. doi: 10.1080/21691401.2017.1414054; b) Gazzi A, Fusco L, Orecchioni M, Ferrari S, Franzoni G, Yan JS, et al. Graphene, other carbon nanomaterials and the immune system: toward nanoimmunity-by-design. J. Phys. Mater., 2020, 3(3), 034009.
- Al-Hatamleh, M.A.I.; Hatmal, M.M.; Alshaer, W.; Rahman, E.N.S.E.A.; Mohd-Zahid, M.H.; Alhaj-Qasem, D.M.; Yean, C.Y.; Alias, I.Z.; Jaafar, J.; Ferji, K.; Six, J.L. Uskoković V.; Yabu, H.; Mohamud, R. COVID-19 infection and nanomedicine applications for development of vaccines and therapeutics: An overview and future perspectives based on polymersomes. Eur. J. Pharmacol., 2021, 896, 173930. doi: 10.1016/j.ejphar.2021.173930 PMID: 33545157
- Singh Sekh, B. Nanoprobes and their applications in veterinary medicine and animal health. Res. J. Nanoscience and Nano., 2012, 2(1), 1-16. doi: 10.3923/rjnn.2012.1.16 PMID: 22523944
- In application of nano-vaccines in veterinary medicine, 2007.
- Brock, K.V. The persistence of bovine viral diarrhea virus. Biologicals. Journal of the International Association of Biological Standardization, 2003, 31(2), 133-135.
- Bruschke, C.; Moormann, R.J.; van Oirschot, J.T.; van Rijn, P.A. A subunit vaccine based on glycoprotein E2 of bovine virus diarrhea virus induces fetal protection in sheep against homologous challenge. Vaccine, 1997, 15(17-18), 1940-1945. doi: 10.1016/S0264-410X(97)00125-4 PMID: 9413105
- Thomas, C.; Young, N.J.; Heaney, J.; Collins, M.E.; Brownlie, J. Evaluation of efficacy of mammalian and baculovirus expressed E2 subunit vaccine candidates to bovine viral diarrhoea virus. Vaccine, 2009, 27(17), 2387-2393. doi: 10.1016/j.vaccine.2009.02.010 PMID: 19428855
- Pecora, A.; Aguirreburualde, M.S.P.; Aguirreburualde, A.; Leunda, M.R.; Odeon, A.; Chiavenna, S.; Bochoeyer, D.; Spitteler, M.; Filippi, J.L.; Dus Santos, M.J.; Levy, S.M.; Wigdorovitz, A. Safety and efficacy of an E2 glycoprotein subunit vaccine produced in mammalian cells to prevent experimental infection with bovine viral diarrhoea virus in cattle. Vet. Res. Commun., 2012, 36(3), 157-164. doi: 10.1007/s11259-012-9526-x PMID: 22639081
- Snider, M.; Garg, R.; Brownlie, R.; van den Hurk, J.V.; Hurk, S.D.L. The bovine viral diarrhea virus E2 protein formulated with a novel adjuvant induces strong, balanced immune responses and provides protection from viral challenge in cattle. Vaccine, 2014, 32(50), 6758-6764. doi: 10.1016/j.vaccine.2014.10.010 PMID: 25454860
- Mahony, D.; Cavallaro, A.S.; Mody, K.T.; Xiong, L.; Mahony, T.J.; Qiao, S.Z.; Mitter, N. In vivo delivery of bovine viral diahorrea virus, E2 protein using hollow mesoporous silica nanoparticles. Nanoscale, 2014, 6(12), 6617-6626. doi: 10.1039/C4NR01202J PMID: 24811899
- Mody, K.T.; Mahony, D.; Cavallaro, A.S.; Zhang, J.; Zhang, B.; Mahony, T.J.; Yu, C.; Mitter, N. Silica Vesicle Nanovaccine Formulations Stimulate Long-Term Immune responses to the bovine viral diarrhoea virus E2 protein. PLoS One, 2015, 10(12), e0143507. doi: 10.1371/journal.pone.0143507 PMID: 26630001
- Mahony, D.; Mody, K.T.; Cavallaro, A.S.; Hu, Q.; Mahony, T.J.; Qiao, S.; Mitter, N. Immunisation of sheep with bovine viral diarrhoea virus, e2 protein using a freeze-dried hollow silica mesoporous nanoparticle formulation. PLoS One, 2015, 10(11), e0141870. doi: 10.1371/journal.pone.0141870 PMID: 26535891
- Maina, T.W.; Grego, E.A.; Boggiatto, P.M.; Sacco, R.E.; Narasimhan, B.; McGill, J.L. Applications of nanovaccines for disease prevention in cattle. Front. Bioeng. Biotechnol., 2020, 8, 608050. doi: 10.3389/fbioe.2020.608050 PMID: 33363134
- Thukral, A.; Ross, K.; Hansen, C.; Phanse, Y.; Narasimhan, B.; Steinberg, H.; Talaat, A.M. A single dose polyanhydride-based nanovaccine against paratuberculosis infection. NPJ Vaccines, 2020, 5(1), 15. doi: 10.1038/s41541-020-0164-y PMID: 32128256
- Bernocchi, B. Porous maltodextrin nanoparticles for the intranasal delivery of vaccines Nanoparticules de maltodextrine pour ladministration intranasale des vaccins; , 2016. Available from: https://theses.hal.science/tel-01480950/document
- Bernocchi, B.; Carpentier, R.; Betbeder, D. Nasal nanovaccines. Int. J. Pharm., 2017, 530(1-2), 128-138. doi: 10.1016/j.ijpharm.2017.07.012 PMID: 28698066
- Hafner, A. Lovrić J.; Lako, G.P.; Pepić I. Nanotherapeutics in the EU: An overview on current state and future directions. Int. J. Nanomedicine, 2014, 9, 1005-1023. PMID: 24600222
- Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal formulations in clinical use: An updated review. Pharmaceutics, 2017, 9(4), 12. doi: 10.3390/pharmaceutics9020012 PMID: 28346375
- Pereira, V.B.; Zurita-Turk, M.; Saraiva, T.D.L.; De Castro, C.P.; Souza, B.M.; Mancha Agresti, P.; Lima, F.A.; Pfeiffer, V.N.; Azevedo, M.S.P.; Rocha, C.S.; Pontes, D.S.; Azevedo, V.; Miyoshi, A. DNA vaccines approach: From concepts to applications. World J. Vaccines, 2014, 4(2), 50-71. doi: 10.4236/wjv.2014.42008
- Dewangan, H.K.; Raghuvanshi, A.; Shah, K. Emerging trends and future challenges of nanovaccine delivery via nasal route. Curr. Drug Targets, 2022. PMID: 36475350
Қосымша файлдар
